1887

Abstract

A hidden Markov model of σ RNA polymerase cofactor recognition sites in , containing either the common or the extended −10 motifs, has been constructed based on experimentally verified σ recognition sites. This work suggests that more information exists at the initiation site of transcription in both types of promoters than previously thought. When tested on the entire genome, the model predicts that approximately half of the σ recognition sites are of the extended type. Some of the response-regulator aspartate phosphatases were among the predictions of promoters containing extended sites. The expression of and was confirmed by site-directed mutagenesis to depend on the extended −10 region.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-9-2417
2001-09-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/9/1472417a.html?itemId=/content/journal/micro/10.1099/00221287-147-9-2417&mimeType=html&fmt=ahah

References

  1. Camacho A., Salas M. 1999; Effect of mutations in the ‘extended −10’ motif of three Bacillus subtilis sigmaA–RNA polymerase-dependent promoters. J Mol Biol 286:683–693 [CrossRef]
    [Google Scholar]
  2. Chan B., Spassky A., Busby S. 1990; The organization of open complexes between Escherichia coli RNA polymerase either with or without consensus −35 sequences. Biochem J 270:141–148
    [Google Scholar]
  3. Durbin R., Eddy S., Krogh A., Mitchison G. 1998; Markov chains and hidden Markov models. In Biological Sequence Analysis. Probabilistic Models of Proteins and Nucleic Acids pp 46–80 Cambridge, MA: Cambridge University Press;
    [Google Scholar]
  4. Helmann J. D. 1995; Compilation and analysis of Bacillus subtilis σA-dependent promoter sequences: evidence for extended contact between RNA polymerase and upstream promoter DNA. Nucleic Acids Res 23:2351–2360 [CrossRef]
    [Google Scholar]
  5. Huang X., Helmann J. D. 1998; Identification of target promoters for the Bacillus subtilis sigma(X) factor using a consensus-directed search. J Mol Biol 279:165–173 [CrossRef]
    [Google Scholar]
  6. Huang X., Fredrick K. L., Helmann J. D. 1998; Promoter recognition by Bacillus subtilis sigma W: autoregulation and partial overlap with the sigma X regulon. J Bacteriol 180:3765–3770
    [Google Scholar]
  7. Jiang M., Grau R., Perego M. 2000; Differential processing of propeptide inhibitors of Rap phosphatases in Bacillus subtilis. J Bacteriol 182:303–310 [CrossRef]
    [Google Scholar]
  8. Keilty S., Rosenberg M. 1987; Constitutive function of a prositively regulated promoter reveals new sequences essential for activity. J Biol Chem 262:6389–6395
    [Google Scholar]
  9. Kunst F., Ogasawara N., Moszer I. 148 other authors 1997; The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249–256 [CrossRef]
    [Google Scholar]
  10. Lazazzera B. A., Kurtser I. G., McQuade R. S., Grossman A. D. 1999; An autoregulatory circuit affecting peptide signaling in Bacillus subtilis. J Bacteriol 1815193–5200
    [Google Scholar]
  11. Lewis R. J., Brannigan J. A., Offen W. A., Smith I., Wilkinson A. J. 1998; An evolutionary link between sporulation and prophage induction in the structure of a repressor: anti-repressor complex. J Mol Biol 283:907–912 [CrossRef]
    [Google Scholar]
  12. Lewis R. J., Krzywda S., Brannigan J. A., Turkenburg J. P., Dodson E. J., Wilkinson A. J., Muchová K., Barák I. 2000; The trans -activation domain of the sporulation response regulator Spo0A revealed by X-ray crystallography. Mol Microbiol 38:198–212 [CrossRef]
    [Google Scholar]
  13. Miller J. H. 1972; Assay of β-galactosidase. In Experiments in Molecular Genetics pp 352–355 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  14. Mueller J. P., Bukusoglu G., Sonenshein A. L. 1992; Transcriptional regulation of Bacillus subtilis glucose starvation-inducible genes: control of gsiA by the ComP–ComA signal transduction system. J Bacteriol 174:4361–4373
    [Google Scholar]
  15. Pedersen A. G., Engelbrecht J. 1995; Investigations of Escherichia coli promoter sequences with artificial neural networks: new signals discovered upstream of the transcriptional startpoint. Proc Int Conf Intell Syst Mol Biol 3:292–299
    [Google Scholar]
  16. Ponnambalam S., Webster C., Bingham A., Busby S. 1986; Transcription initiation at the Escherichia coli galactose operon promoters in the absence of the normal −35 region sequences. J Biol Chem 261:16043–16048
    [Google Scholar]
  17. Rosenberg M., Court D. 1979; Regulation sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet 13:319–373 [CrossRef]
    [Google Scholar]
  18. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467 [CrossRef]
    [Google Scholar]
  19. Saxild H. H., Jacobsen J. H., Nygaard P. 1995; Functional analysis of the Bacillus subtilis purT gene encoding formate-dependent glycinamide ribonucleotide transformylase. Microbiology 141:2211–2218 [CrossRef]
    [Google Scholar]
  20. Saxild H. H., Andersen L. N., Hammer K. 1996; dra–nupC–pdp operon of Bacillus subtilis : nucleotide sequence, induction by deoxyribonucleosides, and transcriptional regulation by the deoR -encoded DeoR repressor protein. J Bacteriol 178:424–434
    [Google Scholar]
  21. Shannon C. E. 1948; A mathematical theory of communication. Bell Syst Tech J 27:379–423 623–656 [CrossRef]
    [Google Scholar]
  22. SubtiList 1999 Release R15.1 Current URL http://bioweb.pasteur.fr/GenoList/SubtiList
    [Google Scholar]
  23. Voskuil M. I., Chambliss G. H. 1998; The −16 region of Bacillus subtilis and other gram-positive bacterial promoters. Nucleic Acids Res 26:3584–3590 [CrossRef]
    [Google Scholar]
  24. Zeng X., Saxild H. H. 1999; Identification and characterization of a DeoR-specific operator sequence essential for induction of dra–nupC–pdp operon expression in Bacillus subtilis. J Bacteriol 181:1719–1727
    [Google Scholar]
  25. Zhang Y., Begley T. P. 1991; Cloning, sequencing and regulation of thiA , a thiamin biosynthesis gene from Bacillus subtilis. Gene 198:73–82
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-9-2417
Loading
/content/journal/micro/10.1099/00221287-147-9-2417
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error