1887

Abstract

The strains which we examined in this study are gram negative and facultatively methylotrophic and utilize methanol and monomethylamine, but not methane, by the serine pathway with activated formaldehyde incorporation. The cellular fatty acids include a large amount of straight-chain unsaturated C acid, and the hydroxy fatty acids include large amounts of 3-OH C and 3-OH C hydroxy acids. The major ubiquinone is ubiquinone Q-9. However, the DNA base compositions of these strains are heterogeneous, ranging from 58 to 66 mol% guanine plus cytosine. Strains TK 0415 (T = type strain), TK 0414, TK 0416, and TK 0441 were distinguished from other strains on the basis of physiological characteristics and DNA-DNA hybridization data. A new species, is proposed for these organisms; the type strain of is TK 0415 (= DSM 1869 = NCIB 11706 = Attwood and Harder strain X).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-45-3-528
1995-07-01
2024-04-02
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/45/3/ijs-45-3-528.html?itemId=/content/journal/ijsem/10.1099/00207713-45-3-528&mimeType=html&fmt=ahah

References

  1. Attwood M. M., Harder W. 1972; A rapid and specific enrichment procedure for Hyphomicrobium spp. Antonie van Leeuwenhoek J. Microbiol. Serol. 38:369–378
    [Google Scholar]
  2. Gebers R., Martens B., Wehmeyer U., Hirsch P. 1986; Deoxyribonucleic acid homologies of Hyphomicrobium spp., Hyphomonas spp., and other hyphal, budding bacteria. Int. J. Syst. Bacteriol. 36:241–245
    [Google Scholar]
  3. Harder W., Attwood M. M., Quayle J. R. 1973; Methanol assimilation by Hyphomicrobium sp. J. Gen. Microbiol. 78:155–163
    [Google Scholar]
  4. Hirsch P. 1989; Genus Hyphomicrobium Stutzer and Hartleb 1898, 76AL,. 1895–1904 Staley J. T., Bryant M. P., Pfennig N., Holt J. G. Bergey’s manual of systematic bacteriology, 3 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  5. Izumi Y., Takizawa M., Tani Y., Yamada H. 1982; An obligate methylotrophic Hyphomicrobium strain. Identification, growth characteristics and cell composition. J. Ferment. Technol. 60:371–375
    [Google Scholar]
  6. Kaneko T., Nozaki R., Aizawa K. 1978; Deoxyribonucleic acid relatedness between Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis . Microbiol. Immunol. 22:639–641
    [Google Scholar]
  7. Large P. J., Peel D., Quayle J. R. 1961; Microbial growth on C1 compounds. 2. Synthesis of cell constituents by methanol- and formate-grown Pseudomonas AM1, and methanol-grown Hyphomicrobium vulgare . Biochem. J. 81:470–480
    [Google Scholar]
  8. Mandel M., Hirsch P., Conti S. F. 1972; Deoxyribonucleic acid base compositions of hyphomicrobia. Arch. Mikrobiol. 81:289–294
    [Google Scholar]
  9. Mevius W. 1953; Beitrage zur Kenntnis von Hyphomicrobium vulgare Stutzer et Hartleb. Arch. Mikrobiol. 19:1–29
    [Google Scholar]
  10. Moore R. L., Hirsch P. 1972; Deoxyribonucleic acid base sequence homologies of some budding and prosthecate bacteria. J. Bacteriol. 110:256–261
    [Google Scholar]
  11. Powell D. M., Roberson B. S., Weiner R. M. 1980; Serological relationships among budding prosthecate bacteria. Can. J. Microbiol. 26:209–217
    [Google Scholar]
  12. Saito H., Miura K. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim. Biophys. Acta 72:619–629
    [Google Scholar]
  13. Takada N. 1975; A new species of Hyphomicrobium, . 29–33 Terui G. Proceedings of the International Symposium on Microbial Growth on C1 Compounds The Society of Fermentation Technology; Japan:
    [Google Scholar]
  14. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed high-performance liquid chromatography. FEMS Microbiol. Lett. 25:125–128
    [Google Scholar]
  15. Uebayasi M., Kawamura S., Tomizuka N., Kamibayashi A. 1985; Comparison of the key enzymes of Hyphomicrobium sp. 53-49 under various growth conditions: aerobic, denitrifying and autotrophic. Agric. Biol. Chem. 49:1799–1807
    [Google Scholar]
  16. Uebayasi M., Tonomura K. 1976; Denitrification by Hyphomicrobium capable of utilizing methanol. J. Ferment. Technol. 54:885–890
    [Google Scholar]
  17. Urakami T., Komagata K. 1979; Cellular fatty acid composition and coenzyme Q system in gram negative methanol-utilizing bacteria. J. Gen. Appl. Microbiol. 25:343–360
    [Google Scholar]
  18. Urakami T., Komagata K. 1981; Electrophoretic comparison of enzymes in gram negative methanol-utilizing bacteria. J. Gen. Appl. Microbiol. 27:381–403
    [Google Scholar]
  19. Urakami T., Komagata K. 1986; Occurrence of isoprenoid compounds in gram-negative methanol-, methane-, and methylamine-utilizing bacteria. J. Gen. Appl. Microbiol. 32:317–341
    [Google Scholar]
  20. Urakami T., Komagata K. 1987; Cellular fatty acid composition with special reference to the existence of hydroxy fatty acids in gram-negative, methanol-, methane-, and methylamine-utilizing bacteria. J. Gen. Appl. Microbiol. 33:135–165
    [Google Scholar]
  21. Urakami T., Komagata K. 1987; Characterization and identification of methanol-utilizing Hyphomicrobium strains and a comparison with species of Hyphomonas and Rhodomicrobium . J. Gen. Microbiol. 33:521–542
    [Google Scholar]
  22. Urakami T., Tamaoka J., Komagata K. 1985; DNA base composition and DNA-DNA homologies of methanol-utilizing bacteria. J. Gen. Appl. Microbiol. 31:243–253
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-45-3-528
Loading
/content/journal/ijsem/10.1099/00207713-45-3-528
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error