1887

Abstract

Comparative 16S rRNA (rDNA) sequence analyses performed on the thermophilic species , and revealed that these organisms are sufficiently different from the traditional species to warrant reclassification in a new genus, gen. nov. An analysis of 16S rRNA sequences established that these three thermoacidophiles cluster in a group that differs markedly from both the obligately thermophilic organism and the facultatively thermophilic organism , as well as many other common mesophilic and thermophilic species. The thermoacidophilic species , and also are unique in that they possess ω-alicylic fatty acid as the major natural membranous lipid component, which is a rare phenotype that has not been found in any other species characterized to date. This phenotype, along with the 16S rRNA sequence data, suggests that these thermoacidophiles are biochemically and genetically unique and supports the proposal that they should be reclassified in the new genus .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-42-2-263
1992-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/42/2/ijs-42-2-263.html?itemId=/content/journal/ijsem/10.1099/00207713-42-2-263&mimeType=html&fmt=ahah

References

  1. Ash C., Farrow J. A. E., Dorsch M., Stackebrandt E., Collins M. D. 1991; Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. Int. J. Syst. Bacteriol. 41:343–346
    [Google Scholar]
  2. Ash C., Farrow J. A. E., Wallbanks S., Collins M. D. 1991; Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small subunit ribosomal RNA sequences. Lett. Appl. Microbiol. 13:202–206
    [Google Scholar]
  3. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Smith J. A., Siedman J. G., Struhl K. 1987 Current protocols in molecular biology. John Wiley and Sons; New York:
    [Google Scholar]
  4. Beam H. W., Perry J. J. 1974; Microbiol degradation and assimilation of n-alkyl-substituted cycloparaffins. J. Bacteriol. 118:394–399
    [Google Scholar]
  5. Bonjour F., Aragno M. 1984; Bacillus tusciae, a new species of thermoacidophilic, facultatively chemolithotrophic, hydrocarbon oxidizing sporeformer from a geothermal area. Arch. Mikrobiol. 139:397–401
    [Google Scholar]
  6. Brimacombe R., Atmadla J., Stiege W., Schuler D. 1988; A detailed model of three dimensional structure of Escherichia coli 16S ribosomal RNA in situ in the 30S subunit. J. Mol. Biol. 199:115–136
    [Google Scholar]
  7. Claus D., Fritze D. 1989 Taxonomy of Bacillus,. 5–26 Harwood C. R.ed Bacillus Plenum Press; New York:
    [Google Scholar]
  8. Collins M. D. 1991 Personal communication
  9. Darland G., Brock T. 1971; Bacillus acidocaldarius sp. nov., an acidophilic thermophilic spore-forming bacterium. J. Gen. Microbiol. 67:9–15
    [Google Scholar]
  10. Deinhard G., Blanz P., Poralla K., Altan E. 1987; Bacillus acidoterrestris sp. nov., a new thermotolerant acidophile isolated from different soils. Syst. Appl. Microbiol. 10:47–53
    [Google Scholar]
  11. Deinhard G., Saar J., Krischke W., Poralla K. 1987; Bacillus cycloheptanicus sp. nov., a new thermoacidophile containing <D-cycloheptane fatty acids. Syst. Appl. Microbiol. 10:68–73
    [Google Scholar]
  12. De Rosa M., Gambacorta A., Minale L., Bulock J. D. 1972; The formation of w-cyclohexyl-fatty acids from shikimate in an acidophilic thermophilic Bacillus. Biochem. J. 128:751–754
    [Google Scholar]
  13. De Rosa M., Gambacorta A., Minale L., Bulock J. D. 1973; Isoprenoids of Bacillus acidocaldarius. Phytochemistry 12:1117–1123
    [Google Scholar]
  14. Dreher R., Poralla K., Konig W. A. 1976; Synthesis of w-alicyclic fatty acids from cyclic precursors in Bacillus subtilis. J. Bacteriol. 127:1136–1140
    [Google Scholar]
  15. Erlich H. A. 1989 Basic methodology. 1–5 Erlich H. A.ed PCR technology. Principles and applications for DNA amplification Stockton Press; New York:
    [Google Scholar]
  16. Felsenstein J. 1982; Numerical methods for inferring evolutionary trees. Q. Rev. Biol. 57:379–404
    [Google Scholar]
  17. Fox G. E., Stackebrandt E., Hespell R. B., Gibson J., Maniloff J., Dyer T. A., Wolfe R. S., Tanner R. S., Magrum L. J., Zablen L. B., Blakemore R., Gupta R., Bonen L., Lewis B. J., Stahl D. A., Luehrsen K. R., Chen K. N., Woese C. R. 1980; The phylogeny of procaryotes. Science 209:457–463
    [Google Scholar]
  18. Fox G. E., Wisotzkey J. D., Jurtshuk P. Jr. 1992; How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Bacteriol. 42:166–170
    [Google Scholar]
  19. Gordon R. E. 1981 One hundred and seven years of the genus Bacillus,. 1–15 Berkeley R. C. W., Goodfellow M.ed The aerobic endospore-forming bacteria: classification and identification Academic Press; London:
    [Google Scholar]
  20. Gordon R. E., Haynes W. C., Pang C. H.-N. 1973 The genus Bacillus. Handbook no. 427 U.S. Department of Agriculture; Washington, D.C:
    [Google Scholar]
  21. Gottlieb P., Rudner R. 1985; Restriction site polymorphism of ribonucleic acid gene sets in members of the genus Bacillus. Int. J. Sys. Bacteriol. 35:244–252
    [Google Scholar]
  22. Green C. J., Stewart G. C., Hollis M. A., Void B. S., Bott K. F. 1985; Nucleotide sequence of the Bacillus subtilis RNA operon rmB. Gene. 37:261–266
    [Google Scholar]
  23. Kaneda T. 1977; Fatty acids of the genus Bacillus-, an example of branched-chain preference. Bacteriol. Rev. 41:391–418
    [Google Scholar]
  24. Kannenberg E., Blume A., Poralla K. 1984; Properties of co-cyclohexane fatty acids in membranes. FEBS Lett. 172:331–334
    [Google Scholar]
  25. Krischke W., Poralla K. 1990; Properties of Bacillus acidocaldarius mutants deficient in w-cyclohexyl fatty acid biosynthesis. Arch. Mikrobiol. 153:463–469
    [Google Scholar]
  26. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. USA 82:6955–6959
    [Google Scholar]
  27. Logan N. A., Berkeley R. C. W. 1981 Classification and identification of members of the genus Bacillus using API tests. 105–140 Berkeley R. C. W., Goodfellow M.ed The aerobic endospore-forming bacteria: classification and identification Academic Press; London:
    [Google Scholar]
  28. Messing J., Vieira J. 1982; A new pair of M13 vectors for selecting either strand of double-digest restriction fragments. Gene 19:269–276
    [Google Scholar]
  29. Poralla K. Unpublished data
  30. Priest F. G. 1981 DNA homology in the genus Bacillus,. 33–57 Berkeley R. C. W., Goodfellow M.ed The aerobic endospore-forming bacteria: classification and identification Academic Press; London:
    [Google Scholar]
  31. Priest F. G., Goodfellow M., Todd C. 1981 The genus Bacillus-, a numerical analysis. 91–103 Berkeley R. C. W., Goodfellow M.ed The aerobic endospore-forming bacteria: classification and identification Academic Press; London:
    [Google Scholar]
  32. Priest F. G., Goodfellow M., Todd C. 1988; A numerical classification of the genus Bacillus. J. Gen. Microbiol. 143:1847–1882
    [Google Scholar]
  33. Rossler D., Ludwig W., Schleifer K. H., Lin C., McGill T. J., Wisotzkey J. D., Jurtshuk P. Jr., Fox G. E. 1991; Phylogenetic diversity in the genus Bacillus as seen by 16S rRNA sequencing studies. Syst. Appl. Microbiol. 14:266–269
    [Google Scholar]
  34. Sneath P. H. A. 1984 Endospore-forming gram-positive rods and cocci. 1104–1207 Kreig N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 2 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  35. Sogin M. L. 1990 Amplification of ribosomal RNA genes for molecular evolution studies. 307–314 Innis M. A., Gelfand D. H., Sninsky J. J., White T. J.ed PCR protocols, a guide to methods and applications Academic Press; Sail Diego:
    [Google Scholar]
  36. Stackebrandt E., Ludwig W., Weizenegger M., Dorn S., McGill T. J., Fox G. E., Woese C. R., Schubert W., Schleifer K. H. 1987; Comparative 16S rRNA oligonucleotide analyses and murine type of round-spore-forming bacilli and nonsporeforming relatives. J. Geh. Microbiol. 133:2523–2529
    [Google Scholar]
  37. Suzuki K. L., Saito K., Kawaguchi A., Okuda S., Komagata K. 1981; Occurrence of co-cyclohexyl fatty acids in Curtobacterium pusilium. J. Gen. Appl. Microbiol. 27:261–266
    [Google Scholar]
  38. Williams A. M., Farrow J. A. E., Collins M. D. 1989; Reverse transcriptase sequencing of 16S ribosomal RNA from Streptococcus cecorum. Lett. Appl. Microbiol. 8:185–189
    [Google Scholar]
  39. Wisotzkey J. D. Unpublished data
  40. Wisotzkey J. D., Jurtshuk P. Jr., Fox G. E. 1990; PCR amplification of 16S rDNA from lyophilized cell cultures facilitates studies in molecular systematics. Curr. Microbiol. 21:325–327
    [Google Scholar]
  41. Wisotzkey J. D., Siefert J., Salinas F., Jurtshuk P. Jr., Fox G. E. Unpublished data.
  42. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev. 51:221–271
    [Google Scholar]
  43. Woese C. R., Maniloff J., Zablen L. B. 1980; Phylogenetic analysis of the mycoplasmas. Proc. Natl. Acad. Sci. USA 77:494–498
    [Google Scholar]
  44. Wolf J., Sharp R. J. 1981 Taxonomic and related aspects of thermophiles within the genus Bacillus,. 252–296 Berkeley R. C. W., Goodfellow M.ed The aerobic endospore-forming bacteria: classification and identification Academic Press; London:
    [Google Scholar]
  45. Yang D., Woese C. R. 1989; Phylogenetic structure of the “leuconostocs”: an interesting case of a rapidly evolving organism. Syst. Appl. Microbiol. 12:145–149
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-42-2-263
Loading
/content/journal/ijsem/10.1099/00207713-42-2-263
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error