Elsevier

Laboratory Investigation

Volume 83, Issue 4, 1 April 2003, Pages 549-559
Laboratory Investigation

Article
Necrosis Is the Predominant Type of Islet Cell Death During Development of Insulin-Dependent Diabetes Mellitus in BB Rats

https://doi.org/10.1097/01.LAB.0000063927.68605.FFGet rights and content
Under an Elsevier user license
open archive

Abstract

Several reports propose that apoptosis of pancreatic beta cells may play a central role in the pathogenesis of both spontaneous and induced insulin-dependent diabetes mellitus (IDDM) in animal models. Whether apoptosis is a major cell death pathway during diabetes development, however, is highly controversial. The aim of this study was to examine the mode of islet cell death in prediabetic diabetes-prone (dp) BB rats, which spontaneously develop diabetes and serve as an animal model for human IDDM. In addition we investigated the cell death pathway of islet cells treated with the widely used diabetogenic compound streptozotocin or with nitric oxide (NO), which during IDDM development has been found to be present in inflamed islets in high concentrations because of the expression of inducible NO synthase. Islets of prediabetic BBdp rats were analyzed for DNA strand breaks and screened by electron microscopy. The mode of islet cell death in vitro after treatment with cytotoxic concentrations of streptozotocin or of NO was investigated using different methods including morphologic analysis by electron microscopy, detection of DNA strand breaks, poly(ADP-ribose) polymerase cleavage, and annexin V staining. Although cells with DNA stand breaks—often accepted as a proof for apoptosis—could be identified, we did not find apoptosis-specific features during islet cell death. Instead we observed massive necrosis as evidenced by disrupted plasma membranes and spilled-out cellular constituents in vitro as well as during disease manifestation in BBdp rats. These results may have serious consequences with regard to the treatment of humans to prevent the development of IDDM.

Cited by (0)