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Figure 1. Robin Thomas.

Robin Thomas, a renowned mathematician, passed away
on March 26, 2020, following a long struggle against
Amyotrophic Lateral Sclerosis (ALS). He was born in
Czechoslovakia in 1962 and earned his doctoral degree in
1985 from Charles University. Following the invitation
of Neil Robertson and Paul Seymour, Robin arrived in the
United States in 1988 and had positions at Ohio State Uni-
versity and Bellcore. He joined Georgia Tech in 1989 as a
faculty member and was appointed a Regent’s Professor in
2010. In 2016, he received the Class of 1934 Distinguished
Professor Award, the highest honor for a professor at Geor-
gia Tech.

Robin’s research was in combinatorics, especially in
structural graph theory, with applications to different
branches of mathematics and computer science. He was
awarded the Fulkerson Prize twice: in 1994 for the proof of
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the 5-color case of Hadwiger’s conjecture and in 2009 for
the proof of the Strong Perfect Graph Theorem. In 2011, he
was awarded the Karel Janeček Foundation Neuron Prize
for Lifetime Achievement in Mathematics. He became an
inaugural fellow of the American Mathematical Society in
2012 and a fellow of the Society for Industrial and Applied
Mathematics in 2018.

In addition to his prominent achievements in research,
Robin’s remarkable leadership had a profound influence
in education. Robin served as the director of the Al-
gorithms, Combinatorics, and Optimization (ACO) pro-
gram at Georgia Tech from 2006 to 2019. The ACO pro-
gram at Georgia Tech, founded around 1991, is an elite
interdisciplinary doctoral program that combines three
rapidly growing research areas in computer science, math-
ematics, and industrial engineering. Robin was involved
in the founding of the ACO program and was the second
director of the program. His long-term service preserved
and enhanced the prestigious reputation of the program.

Sadly, in 2008, Robin was diagnosed with ALS which
gradually decreased his muscle strength, resulting in diffi-
culty moving, speaking, and breathing. But he never gave
up working. He delivered a very encouraging commence-
ment address at Georgia Tech in 2016. He kept doing re-
search, teaching, advising students, and leading the ACO
program until a few months prior to his tragic passing in
2020. Indeed, he accomplished this all with truly remark-
able diligence and passion.

Robin’s professionalism and personality heavily influ-
enced my life. He offered me constant and supportive
encouragement not only verbally but also through his ac-
tions since I was a graduate student. It continuously bene-
fitsme even today. My conversations with himwere always
inspiring, and his suggestions were always comprehensive
and considerate. He is a role model not only in academia
but also in my daily life. It is my good fortune to have had
Robin as my advisor.

In this article, I will briefly survey some of Robin’s re-
search achievements among his more than 100 papers,
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Figure 2. Robin’s family.

Figure 3. Robin’s academic family. The photo was taken at the
banquet during the conference at Georgia Tech in 2012
celebrating Robin’s work and his 50th birthday.

focusing on hismost important work and results joint with
his students and postdocs. My goal is to give a rough pic-
ture of Robin’s contribution and the trajectory of his re-
search while simultaneously highlighting the far reaches
of his mentoring. I will finish the article by briefly remark-
ing on Robin’s leadership for the ACO program.

Before we survey Robin’s research we define some com-
mon concepts and notation from graph theory that will be
used throughout. A graph 𝐺 consists of a set 𝑉(𝐺) (called
the set of vertices) and a set 𝐸(𝐺) (called the set of edges),
where every element 𝑒 of 𝐸(𝐺) is a subset {𝑢, 𝑣} of 𝑉(𝐺)
with size 2 and we say 𝑢, 𝑣 are adjacent and 𝑒 is incidentwith
𝑢 and 𝑣. We assume that graphs are finite (i.e., 𝑉(𝐺) and
𝐸(𝐺) are finite) in this article, unless otherwise specified.
As our goal is to give a picture of Robin’s research instead
of providing precise mathematical statements, sometimes
for simplicity we will allow 𝐸(𝐺) to be a multi-set without
explicitly stating this. The complete graph on 𝑡 vertices, de-
noted by 𝐾𝑡, is the graph consisting of 𝑡 pairwise adjacent
vertices. We use 𝐾𝑡1,𝑡2,...,𝑡𝑘 to denote a complete multi-partite
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Figure 4. Edge-contraction. The graph at the right-hand-side
is a minor of the graph at the left-hand-side. But the former is
not a topological minor of the latter.

graph, which is a graph whose set of vertices can be parti-
tioned into 𝑘 parts with size 𝑡1, 𝑡2, ..., 𝑡𝑘, respectively, such
that any two vertices in different parts are adjacent.

1. Well-quasi-ordering and Infinite Graphs
Robin’s work in the early stages of his career was mainly
on well-quasi-ordering theory and infinite graphs.

A quasi-ordering on a set 𝑋 is a reflexive and transitive
binary relation on 𝑋 . A quasi-ordering ⪯ on 𝑋 is a well-
quasi-ordering if for every infinite sequence 𝑎1, 𝑎2, ... over 𝑋 ,
there exist 𝑖 < 𝑗 such that 𝑎𝑖 ⪯ 𝑎𝑗. Well-quasi-ordering
is important in mathematics, logic, and computer science.
One particular strength of well-quasi-ordering is that ev-
ery property that is closed under a well-quasi-ordering1

can be characterized by finitely many objects. For exam-
ple, the celebrated Graph Minor Theorem of Robertson
and Seymour states that the minor relation is a well-quasi-
ordering on graphs and implies that every graph property
that is closed under vertex-deletion, edge-deletion, and
edge-contraction (such as the property that being able to
be drawn in a fixed surface without edge-crossing) can be
characterized by a finite set of graphs and can be tested in
polynomial time. (See Figure 4 for an illustration for edge-
contraction.)

The study of well-quasi-ordering can be traced back to
the 1940s to two conjectures of Vazsonyi on graphs: trees
and subcubic graphs are well-quasi-ordered by the topo-
logical minor relation, respectively. Here we say that a
graph 𝐻 is a topological minor of another graph 𝐺 if some
subgraph of 𝐺 is isomorphic to a graph that can be ob-
tained from 𝐻 by repeatedly subdividing edges. (See Fig-
ure 5 for an illustration for subdivisions.) Both conjectures
have been solved. The tree conjecture is now known as the
Kruskal Tree Theorem and is important in reverse mathe-
matics, an area in logic that seeks to determine the axioms
that are required to prove theorems. However, the topo-
logical minor relation is not a well-quasi-ordering on all
graphs. For example, the set consisting of the graphs ob-
tained from cycles by doubling all their edges is an infinite
antichain with respect to the topological minor relation.

Since Vazsonyi’s conjectures cannot be generalized to
all graphs, two natural directions can be considered: one

1That is, there exists a well-quasi-ordering ⪯ such that an element 𝑦 satisfies
this property implies that every element 𝑥 with 𝑥 ⪯ 𝑦 satisfies this property.
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Figure 5. Subdividing an edge. The graph on the left-hand-
side is a topological minor of the graph on the right-hand-side.
The former is also a minor of the latter since the former can
be obtained from the latter by contracting an edge.

is to characterize all graphs that can be well-quasi-ordered
by the topological minor relation, and the other is to con-
sider weaker graph containment relations and try to gen-
eralize them to infinite graphs if possible. Robin’s work
spans both directions.

We start with the second direction. The topological mi-
nor relation is closely related to the minor relation, as
shown by Kuratowski’s theorem on characterizing planar
graphs: a graph 𝐺 can be drawn in the plane with no edge-
crossing if and only if 𝐾5 and 𝐾3,3 are not topological mi-
nors of 𝐺 and if and only if 𝐾5 and 𝐾3,3 are not minors of
𝐺. Here we say that a graph 𝐻 is a minor of another graph
𝐺 if 𝐻 is isomorphic to a graph that can be obtained from
a subgraph of 𝐺 by repeatedly contracting edges. If 𝐺 con-
tains 𝐻 as a topological minor, then 𝐺 contains 𝐻 as a mi-
nor, but not vice versa. Hence the minor relation is a natu-
ral candidate for considering well-quasi-ordering. Robert-
son and Seymour proved that the minor relation is a well-
quasi-ordering on (finite) graphs, confirming a conjecture
of Wagner, in their seminal series of around 20 papers.
This result is now known as the Graph Minor Theorem.
The next natural question is whether theminor relation is a
well-quasi-ordering on infinite graphs as well. Robin [18]
disproved it by constructing infinitely many uncountable
graphs that form an antichain with respect to the minor
relation. The case for countable infinite graphs remains
open. On the other hand, Robin [19] proved that for any
planar graph𝐻, theminor relation is a well-quasi-ordering
on the set of 𝐻-minor free finite or infinite graphs.

One strategy to prove that a quasi-ordering on a set 𝑋
is a well-quasi-ordering is the following. If this relation is
not a well-quasi-ordering, then there exists an infinite se-
quence 𝑎1, 𝑎2, ... over 𝑋 such that 𝑎𝑖 is not smaller than 𝑎𝑗
with respect to this relation for all 𝑖 < 𝑗. In particular, 𝑎1
is not smaller than any other entry of the sequence. So it
gives an extra property for all entries other than 𝑎1 and re-
duces the well-quasi-ordering problem on 𝑋 to the one on
a subset of 𝑋 consisting of objects with lower complexity.
This addresses the importance of studying the structure of
𝐻-minor free finite or infinite graphs, for any fixed graph
𝐻. Such a theorem for finite graphs is the cornerstone
of Robertson and Seymour’s proof of their Graph Minor
Theorem. Joint with Robertson and Seymour, Robin [13]

provided an exact characterization of𝐾𝜅-minor free graphs
in terms of their structures, for any fixed infinite cardinal
𝜅.

The case for finite cardinals 𝜅 is more complicated, and
no exact characterization is known. Robertson and Sey-
mour proved that for every integer 𝑘, every 𝐾𝑘-minor free
finite graph admits a certain well-described structure, and
𝐾𝑘′ does not admit this structure for some larger integer
𝑘′. Though it is not an exact characterization for 𝐾𝑘-minor
free graphs, it is sufficient to prove the Graph Minor Theo-
rem and a number of results in graph theory and computer
science. In joint work with Diestel, Robin extended Robert-
son and Seymour’s result by showing that every 𝐾𝑘-minor
free infinite graph admits the same structure, for any fixed
integer 𝑘.

Nowwemove back to topological minors of graphs. Re-
call that there is an infinite antichain with respect to the
topological minor relation. Among any known such infi-
nite antichain, one can find a 𝑅𝑘-topological minor for ar-
bitrarily large integers 𝑘 in graphs in this antichain, where
𝑅𝑘 is the graph obtained from a path of length 𝑘 by dou-
bling all edges. Robertson in the late 1980s conjectured
that this is the only obstruction: for any fixed integer 𝑘, (fi-
nite) graphs with no 𝑅𝑘-topological minor are well-quasi-
ordered by the topological minor relation. Robin and I
proved this conjecture and characterized all topological
minor-closed classes of graphs that are well-quasi-ordered
by the topological minor relation. As in the proof of the
Graph Minor Theorem, we [8] proved a structure theorem
for 𝐻-topological minor free graphs for any fixed graph 𝐻
on the way to proving Robertson’s conjecture.

For finite graphs, problems about topological minors
are usually more complicated and behave less nicely than
the ones about minors. For example, it is more compli-
cated to state the aforementioned structural theorem for
𝐻-topological minor free graphs than Robertson and Sey-
mour’s theorem for 𝐻-minor free graphs. However, the
situation seems different for infinite graphs. For example,
Robin, joint with Robertson and Seymour, proved that for
any infinite cardinal 𝜅, an infinite graph is 𝐾𝜅-topological
minor free if and only if it admits a well-founded tree-
decomposition of width < 𝜅.

Another interesting result of Robin is a construction of
Lebesgue non-measurable sets in ℝ by using the simple
fact that finite or infinite graphs with no odd cycles are
bipartite.

2. Graph Minors
Wehave seen that Robinmade significant contributions on
graphminors in the previous section. But those are just the
tip of the iceberg. In this section, we will focus on Robin’s
contributions to (finite) graph minors.
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Before Robertson and Seymour were able to prove the
Graph Minor Theorem, they considered the fundamental
question of finding a structural description of 𝐻-minor
free graphs, for any fixed graph𝐻. The simplest non-trivial
case is when 𝐻 is a tree. Robertson and Seymour proved
that for every tree (or forest) 𝐻, there exists an integer 𝑓𝐻
such that every 𝐻-minor free graph can be represented by
a collection 𝑆 of closed intervals in ℝ such that each vertex
corresponds to an interval in 𝑆, every point in ℝ is con-
tained in at most 𝑓𝐻 + 1 intervals in 𝑆, and if two vertices
are adjacent, then the corresponding two intervals overlap.
As graphs are finite, we may assume that those intervals in
𝑆 are finite and have integral endpoints. So those intervals
can be treated as subpaths of a fixed path. Such a represen-
tation of a graph𝐺 by using a collection subpaths of a host
path (or intervals in ℝ) is called a path-decomposition of 𝐺.
The path-width of a graph 𝐺 is the minimum 𝑘 such that
no vertex of the host path is contained in more than 𝑘 + 1
paths in the collection. Hence the aforementioned result
can be equivalently stated as the following: for every tree
(or forest) 𝐻, there exists an integer 𝑓𝐻 such that every 𝐻-
minor free graph has path-width at most 𝑓𝐻 . Since there
exists no constant 𝑐 such that every tree has path-width
at most 𝑐, the above result is a rough characterization for
graphs that forbid a tree (or forest) as a minor. But the
value of 𝑓𝐻 obtained by Robertson and Seymour is not op-
timal. In joint work with Bienstock, Robertson, and Sey-
mour, Robin improved the constant 𝑓𝐻 to be |𝑉(𝐻)| − 2,
which is optimal. In joint work with Dang, Robin further
proved that every 2-connected graphwith large path-width
contains a large apex-forest or a large outerplanar graph
as a minor, answering a question of Seymour. The same
result was independently proved by Huynh, Joret, Micek,
and Wood.

A tree-decomposition of a graph 𝐺 is defined in a way that
is similar to a path-decomposition: it consists of a collec-
tion of subtrees of a fixed tree 𝑇 such that each subtree cor-
responds to a vertex of 𝐺, and the subtrees corresponding
to any two adjacent vertices of𝐺 intersect. The tree-width of
𝐺 is the minimum 𝑘 such that 𝐺 has a tree-decomposition
such that no vertex in the host tree 𝑇 is contained in more
than 𝑘+1 subtrees in the collection. It is known that forests
are exactly the graphs with tree-width at most 1, though
trees can have arbitrarily large path-width. Moreover, a
tree-decomposition of 𝐺 tells how to construct 𝐺 in a tree-
like fashion. For every vertex 𝑣 of the host tree 𝑇, we call
the subgraph of 𝐺 induced by the vertices corresponding
to the subtrees of 𝑇 in the tree-decomposition containing
𝑣 the bag corresponding to 𝑣. Then 𝐺 can be constructed
by repeatedly gluing bags in the same way as we construct
the host tree by repeatedly attaching vertices.

Tree-width is an important notion in graph theory and
computer science. For example, Courcelle proved that for
any fixed 𝑘, any property definable in monadic second-
order logic can be tested for graphs with tree-width at most
𝑘 in linear time. But the running time heavily depends on
the tree-width.

What can we say about the graphs with large tree-width?
It is known that planar graphs can have arbitrarily large
tree-width. Robertson and Seymour proved that planar
graphs are the only obstructions for having small tree-
width: for every planar graph 𝐻, there exists an integer
𝑝𝐻 such that every 𝐻-minor free graph has tree-width at
most 𝑝𝐻 . Recall that the running time of Courcelle’s algo-
rithm heavily depends on the tree-width. Hence reducing
𝑝𝐻 to be as small as possible is crucial. The constant 𝑝𝐻
in Robertson and Seymour’s theorem is enormous; Robin
together with Robertson and Seymour improved 𝑝𝐻 to be
2poly(|𝑉(𝐻)|+|𝐸(𝐻)|), which was further improved to be poly-
nomial in |𝑉(𝐻)|+|𝐸(𝐻)| by Chekuri and Chuzhoy around
20 years later.

How about if we forbid a general graph 𝐻 as a mi-
nor? Robertson and Seymour proved that for every graph
𝐻, every 𝐻-minor free graph admits a tree-decomposition
whose bags are “nearly embeddable” in a surface in which
𝐻 cannot be embedded. It is a very deep and difficult re-
sult and is a cornerstone of the proof of the Graph Minor
Theorem. Recently, joint with Kawarabayashi and Wollan,
Robin provided a simpler proof.

We have discussed the structure of graphs with no fixed
large graph 𝐻 as a minor. Those results are very general
and sufficient for numerous applications. However, they
are asymptotic results in the sense that they only show that
every 𝐻-minor free graph satisfies a property that is not
satisfied by another graph that is similar to𝐻. This is likely
to be unavoidable because 𝐻 is very general.

Can we get a more precise structural description for
graphs with no fixed small graph 𝐻 as a minor? Some-
things about these are known: 𝐾3-minor free graphs are
exactly forests; 𝐾4-minor free graphs are exactly the graphs
of tree-width at most 2; 𝐾5-minor free graphs are exactly
the graphs that admit a tree-decomposition, each bag of
which is a planar graph or a special graph on 8 vertices
sharing atmost 3 vertices with each of the other bags. How-
ever, there is evidence showing that the structure of 𝐾6-
minor free graphs is much more complicated. Restricting
the problems to highly connected graphs might simplify
the situation. For example, the aforementioned result for
𝐾5 implies that a 4-connected graph is 𝐾5-minor free if
and only if it is planar. Along this line, Jørgensen con-
jectured that every 6-connected 𝐾6-minor free graph is an
apex-graph. An apex-graph is a graph 𝐺 such that 𝐺 − 𝑣 is
planar for some vertex 𝑣. Apex-graphs are 𝐾6-minor free
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Figure 6. An example of the 𝑌 -Δ operation and the Δ-𝑌
operation.

since planar graphs are 𝐾5-minor free. So Jørgensen’s con-
jecture is equivalent to saying that a 6-connected graph is
𝐾6-minor free if and only if it is an apex-graph. Though
Jørgensen’s conjecture remains open, Robin together with
Kawarabayashi, Norine, and Wollan proved that it is true
for all large graphs.

Theorem 1 ([7]). There exists an integer 𝐶 such that every
6-connected 𝐾6-minor free graph on at least 𝐶 vertices is an
apex-graph.

This theorem was further strengthened by Norine and
Robin by replacing 6 by any constant 𝑡 and replacing 𝐶 by
a constant only depending on 𝑡.
𝐾6-minor free graphs are closely related to two natural

ways of extending the notion of planar embedding. We
say that a graph is linkless embeddable if it can be embed-
ded in ℝ3 such that any two disjoint cycles have zero link-
ing number; a graph is flat embeddable if it can be embed-
ded in 𝕊3 such that every cycle is the boundary of an open
disk in 𝕊3 disjoint from the graph. Planar graphs are ob-
viously linkless embeddable and flat embeddable, but 𝐾6
is not linkless or flat embeddable. More non-linkless em-
beddable graphs can be constructed by Δ-𝑌 and 𝑌 -Δ op-
erations. The Δ-𝑌 operation deletes the 3 edges of a 𝐾3-
subgraph and adds a new vertex adjacent to the 3 vertices
of this 𝐾3-subgraph; the 𝑌 -Δ operation deletes a vertex of
degree 3 and adds 3 edges between the 3 neighbors of the
deleted vertex. (See Figure 6.) All graphs that can be ob-
tained from 𝐾6 by repeatedly applying Δ-𝑌 and 𝑌 -Δ opera-
tions are not linkless or flat embeddable. There are 7 such
graphs, where one of them is the Petersen graph (see Figure
7). The class of these 7 graphs is called the Petersen family.
Joint with Robertson and Seymour, Robin proved the fol-
lowing theorem that connects these three notions, where
the equivalence between Statements 1 and 3 was conjec-
tured by Sachs, and the equivalence between Statements 1
and 2 was conjectured by Böhme and Saran.

Theorem 2 ([16]). The following are equivalent.

1. A graph is linkless embeddable.
2. A graph is flat embeddable.
3. A graph does not contain any graph in the Petersen fam-
ily as a minor.
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Figure 7. The Petersen graph.

Another significant result of Robin about excluded mi-
nor theory is the following separator theorem proved in
joint work with Alon and Seymour.

Theorem 3 ([1]). Let ℎ be an integer, and let𝐺 be a 𝐾ℎ-minor
free graph on 𝑛 vertices. If 𝑤 maps each vertex to a nonnegative
real number, then there exists 𝑋 ⊆ 𝑉(𝐺) with |𝑋| ≤ ℎ3/2𝑛1/2
such that ∑𝑣∈𝑉(𝐶)𝑤(𝑣) ≤

1
2
∑𝑣∈𝑉(𝐺)𝑤(𝑣) for every compo-

nent 𝐶 of 𝐺 − 𝑋.

The above separator theorem generalizes the famed sep-
arator theorem of Lipton and Tarjan on planar graphs and
is useful for designing efficient divide-and-conquer algo-
rithms for numerous problems. For example, it leads to
subexponential time algorithms of some NP-hard prob-
lems for minor-closed families and a 𝑂(𝑛3/2)-time algo-
rithm for solving a system of 𝑛 linear equations with 𝑛 vari-
ables whose sparsity structure corresponds to a graph in a
minor-closed family.

Now we turn our attention to Robin’s work on algo-
rithms related to graph minors. Recall that Courcelle
proved that every property expressible by monadic second-
order logic can be tested in linear time on bounded tree-
width graphs. This result cannot be extended to general
minor-closed families, unless NP=P. For example, testing
whether a planar graph is 3-colorable or not is an NP-
hard problem, but 3-colorability is expressible bymonadic
second-order logic. Hence in an attempt to enlarge the
class of input graphs, one has to restrict the set of prop-
erties to be tested. Such natural candidates are the first-
order properties. In joint withDvořák and Král’, Robin suc-
cessfully proved that first-order properties can be tested in
linear time on any class of graphs of bounded expansion.
This is a class of graphs that cannot be made arbitrarily
dense by contracting disjoint subgraphs with bounded ra-
dius and is a far-reaching generalization of minor-closed
families.

Theorem 4 ([3]). Letℱ be a class of graphs of bounded expan-
sion, and let Π be a first-order property of graphs. Then there
exists a linear time algorithm that decides whether a graph in
ℱ satisfies Π.

Now we move to the extremal aspect. Euler’s formula
implies that every planar graph on 𝑛 vertices has at most
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3𝑛−6 edges. What is the maximum number of edges a 𝐾𝑝-
minor free graph can have? Planar graphs are 𝐾5-minor
free, so every graph that can be made planar by deleting
at most 𝑝 − 5 vertices is 𝐾𝑝-minor free, and such a graph

has at most (𝑝− 2)𝑛− (𝑝−1
2
) edges. Mader showed that the

bound provided by this simple observation gives the opti-
mal answer for 1 ≤ 𝑝 ≤ 7. It is no longer true for 𝑝 = 8
since 𝐾2,2,2,2,2 and graphs that can be obtained from copies
of 𝐾2,2,2,2,2 by identifying cliques of size 5 are counterex-
amples; Jørgensen showed that they are exactly the only
counterexamples. In joint work with Song, Robin further
characterized the 𝑝 = 9 case. They [17] proved that every
𝐾9-minor free graph on 𝑛 ≥ 9 vertices with at least 7𝑛− 27
edges is either isomorphic to 𝐾2,2,2,3,3 or can be obtained
from copies of 𝐾1,2,2,2,2,2 by identifying cliques of size 6.
SuchMader-type results are useful for attackingHadwiger’s
conjecture. (See Section 3 for more details about Had-
wiger’s conjecture.) But if they were true for all sufficiently
large 𝑝, then they would imply that the average degree of
𝐾𝑝-minor free graphs is 𝑂(𝑝), which is far from the correct

average degree Θ(𝑝√log 𝑝) as shown by Kostochka and in-
dependently by Thomason. However, Seymour and Robin
conjectured that the Mader-type theorem holds for large
highly connected graphs: for every 𝑝 ≥ 1, there exists an
integer 𝑁 such that every (𝑝 − 2)-connected 𝐾𝑝-minor free

graphs on 𝑛 ≥ 𝑁 vertices has at most (𝑝−2)𝑛−(𝑝−1
2
) edges.

This was proved by Norin and Robin.

3. Graph Coloring
Arguably one of the most famous problems in graph the-
ory is the Four Color Problem, which asks whether every
planar graph is 4-colorable (i.e., the vertices can be col-
ored with 4 colors so that any two adjacent vertices receive
different colors), raised by Guthrie in 1852. Even though
this question looks elementary, it is equivalent to numer-
ous statements in different branches ofmathematics and is
surprisingly difficult to prove. Robin made significant con-
tributions on graph coloring, mainly related to the Four
Color Problem and its variants.

A proof of the Four Color Problem was published by
Appel andHaken in the 1970s. Even though this proof rep-
resents a major breakthrough, it was not fully accepted for
two reasons: one is that part of the proof uses a computer
and cannot be checked by hand, and the other is that the
part of the proof that is supposed to be checked by hand
is extremely complicated and tedious. Robertson, Sanders,
Seymour, and Robin tried to read this proof, but very soon
gave up. They decided to make their own proof, and they
did it [12] in the 1990s. Though their proof still relies on a
computer, it is significantly simpler and has been indepen-
dently verified (including the computer part) by different

groups of people. Due to this work, now it is safe to call it
the Four Color Theorem.

In 1943, Hadwiger conjectured that for any 𝑡 ≥ 1, every
𝐾𝑡+1-minor free graph is 𝑡-colorable. Since planar graphs
are 𝐾5-minor free, Hadwiger’s conjecture is a far-reaching
generalization of the Four Color Theorem. Hadwiger’s
conjecture is not hard to prove for 𝑡 ≤ 3; Wagner used his
structural theorem for 𝐾5-minor free graphs mentioned in
the previous section to prove that the case 𝑡 = 4 is equiva-
lent to the Four Color Theorem. Joint with Robertson and
Seymour, Robin proved the next case by proving that the
case 𝑡 = 5 is also equivalent to the Four Color Theorem.
For this work, Robin was awarded his first Fulkerson Prize.
Hadwiger’s conjecture remains open for 𝑡 ≥ 6.

Theorem 5 ([14]). Every 𝐾6-minor free graph is 5-colorable.

The chromatic number of a graph 𝐺 is the minimum 𝑘
such that 𝐺 is 𝑘-colorable. The clique number of 𝐺 is the
maximum size of a set of pairwise adjacent vertices in 𝐺.
Clearly, the chromatic number is at least the clique num-
ber. One natural question is whether these two numbers
are equal. In other words, is every 𝐾𝑡+1-subgraph free
graph 𝑡-colorable, for any 𝑡? It is well-known that the an-
swer is negative. So Hadwiger’s conjecture can be viewed
as an attempt to remedy this by forbidding 𝐾𝑡+1 as a more
general structure. But can we characterize all graphs whose
chromatic number equals the clique number? Since the
disjoint union of 𝐾𝑡 and an arbitrary graph whose chro-
matic number is smaller than 𝑡 satisfies that the chromatic
number equals the clique number, any meaningful charac-
terization must consider all induced subgraphs. This leads
to the notion of perfect graphs.

A graph 𝐺 is perfect if every induced subgraph of 𝐺 sat-
isfies that its chromatic number equals its clique number.
Typical examples of non-perfect graphs include any odd cy-
cle of length at least 5 and its complement. Berge proposed
two conjectures in 1961. The first one, proved by Lovász
in 1972, states that every graph is perfect if and only if its
complement is perfect, and it is called the Perfect Graph
Theorem. The second conjecture implies the first one and
states that the aforementioned odd cycles of length at least
5 and their complements are exactly the obstructions to
being perfect. Joint with Chudnovsky, Robertson and Sey-
mour, Robin proved the second conjecture, which is now
known as the Strong Perfect Graph Theorem, and for this,
Robin was awarded his second Fulkerson Prize.

Theorem 6 ([2]). A graph is perfect if and only if it does not
contain any odd cycle of length at least 5 or its complement as
an induced subgraph.

The Four Color Theorem is equivalent to the state-
ment that every 2-edge-connected 3-regular planar graph is
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3-edge-colorable (i.e., the edges can be colored with 3 col-
ors so that any two edges sharing an end receive differ-
ent colors). In 1966, Tutte conjectured that every 2-edge-
connected 3-regular graph with no Petersen minor is 3-
edge-colorable. Since the Petersen graph is non-planar,
Tutte’s conjecture is stronger than the Four Color Theo-
rem. Tutte’s conjecture was solved by a series of papers
of Robin and his collaborators. There are two natural
kinds of graphs having no Petersen minor: apex graphs
and double-cross graphs, where a graph is a double-cross
graph if it can be drawn in the plane with at most two
crossings, and each crossing is on the infinite region. Joint
with Robertson and Seymour, Robin showed that every
minimum counterexample to Tutte’s conjecture is either
an apex graph or a double-cross graph. Joint with Sanders,
Robin proved that every 2-edge-connected 3-regular apex
graph is 3-edge-colorable. Joint with Edwards, Sanders,
and Seymour, Robin proved that every 2-edge-connected
3-regular double-cross graph is 3-edge-colorable. Hence
Tutte’s conjecture follows.

The Four Color Theorem is optimal in the sense that 4
colors are necessary for some planar graphs, such as 𝐾4. A
classical result of Grötzsch states that 3 colors are enough if
triangles are forbidden. Even though Grötzsch’s theorem
ensures the existence of a 3-coloring, it was unclear how
to find such a coloring efficiently. Robin, together with
Dvořák and Kawarabayashi, gave a linear time algorithm
to find a 3-coloring for a given triangle-free planar graph.
On the other hand, Grötzsch’s theorem is no longer true
for graphs embedded in surfaces other than the plane. But
Robin, together with Dvořák and Král’, gave a linear time
algorithm to test whether a given triangle-free graph em-
bedded in a fixed surface is 3-colorable or not, and a qua-
dratic time algorithm to find a 3-coloring if such a coloring
exists.

Besides the aforementioned variation of Grötzsch’s the-
orem about surfaces of higher Euler genus, a potential
strengthening of Grötzsch’s theorem was proposed by
Havel: forbidding triangles that are close to each other suf-
fices. It was proved in Robin’s joint work with Dvořák and
Král’.

Theorem 7 ([4]). There exists a constant 𝑑 such that every
planar graph with no two triangles within distance at most 𝑑 is
3-colorable.

The condition of having no triangles can be restated in
terms of the girth, which is the length of the shortest cycle
of a graph. So a statement equivalent to Grötzsch’s theo-
rem says that every planar graph with girth at least 4 is 3-
colorable. It reduces the number of necessary colors from
the case with girth 3. So it is natural to expect that one can
get even nicer coloring results for the case with girth at least

5. One such result was proved by Robin, together with
Walls, showing that every graph with girth at least 5 em-
beddable in the Klein bottle is 3-colorable. This result an-
swers a question ofWoodburn and complements results of
Thomassen who proved the same for the projective plane
and torus. Postle and I later proved a result about the edge-
density for 4-critical graphs, giving a unified proof of the
aforementioned three results.

Raising the girth not only enables us to strengthen
Grötzsch’s theorem to surfaces with higher Euler genus
but also enables us to strengthen the “colorability.” A list-
assignment of a graph is a function 𝐿 that maps each vertex
to a set of colors; a graph is 𝐿-colorable if we can assign
each vertex 𝑣 a color in 𝐿(𝑣) such that any pair of adja-
cent vertices receive different colors; a list-assignment is
a 𝑘-list-assignment if it maps each vertex to a set of size at
least 𝑘. A graph is 𝑘-choosable if it is 𝐿-colorable for any 𝑘-
list-assignment 𝐿. Every 𝑘-choosable graph is 𝑘-colorable
since a 𝑘-coloring is an 𝐿-coloring for some 𝐿 that maps
every vertex to the same set. Thomassen proved that every
planar graph with girth at least 5 is 3-choosable and ev-
ery planar graph is 5-choosable. Thomassen’s results moti-
vated many results and conjectures about coloring graphs
embeddable in a surface with girth at least 3 ≤ ℓ ≤ 5 by
using 8−ℓ colors or (8−ℓ)-list-assignments. Joint with Pos-
tle, Robin [10] developed a theory of linear isoperimetric
inequalities for graphs on surfaces and applied it to prove
a number of new results and known results, such as color-
ing embedded graphs with no short non-null-homotopic
cycles or proving the existence of exponentially many dif-
ferent colorings.

4. Graphs on Surfaces
We have discussed many of Robin’s results about coloring
graphs embeddable in a surface. In this section, we will
discuss his other results for those graphs.

One group of such results is about Hamiltonian cycles.
A Hamiltonian cycle in a graph 𝐺 is a cycle that contains all
vertices of 𝐺. Looking for Hamiltonian cycles is a popular
topic in graph theory. It is also related to the Four Color
Theorem. Recall that the Four Color Theorem is equiva-
lent to the statement that every 2-edge-connected 3-regular
planar graph is 3-edge-colorable. It is easy to see that if a
3-regular planar graph has aHamiltonian cycle, then it is 3-
edge-colorable. Hence one might expect to prove the Four
Color Theorem by proving that every 2-edge-connected 3-
regular planar graph has a Hamiltonian cycle. However,
this expectation is too good to be true. Tutte constructed a
3-connected 3-regular planar graph that has no Hamilton-
ian cycle, thereby disproving a conjecture of Tait. Tutte
also proved that every 4-connected planar graph has a
Hamiltonian cycle.
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Two conjectures for extending Tutte’s result to graphs
embeddable in surfaces with higher Euler genus were pro-
posed. One of them was conjectured by Grünbaum, stat-
ing that every 4-connected graph embeddable in the pro-
jective plane has a Hamiltonian cycle. Joint with Yu,
Robin [20] proved this conjecture. The other conjec-
ture was proposed by Grünbaum, and independently by
Nash-Williams, stating that every 4-connected toroidal
graph (i.e., a graph that can be drawn in the torus with-
out edge-crossing) has a Hamiltonian cycle. This con-
jecture remains open, but Robin proved two weakenings.
In another joint paper with Yu, he proved that every 5-
connected toroidal graph has a Hamiltonian cycle; in joint
work with Yu and Zang, he proved that every 4-connected
toroidal graph has a Hamiltonian path.

Another set of Robin’s results is about planar covers and
graphs embedded in the projective plane. A planar cover
of a graph 𝐺 is a planar graph 𝐿 such that there exists a
mapping 𝑓 ∶ 𝑉(𝐿) → 𝑉(𝐺) such that for every vertex 𝑣,
𝑓 gives a bijection between the set of neighbors of 𝑣 in 𝐿
and the set of neighbors of 𝑓(𝑣) in 𝐺. Planar covers natu-
rally arise from graphs embedded in the projective plane.
If 𝐺 is a graph embedded in the projective plane, then the
lifting of this embedding into the universal covering sur-
face of the projective plane gives a planar cover of 𝐺. So if
𝐺 is embeddable in the projective plane, then 𝐺 has a (fi-
nite) planar cover. The converse statement is not true, as
the disjoint union of two copies of 𝐾5 has a planar cover
but cannot be embedded in the projective plane. Negami
conjectured that the converse statement holds if only con-
nected graphs are considered: every connected graph has
a (finite) planar cover if and only if it is embeddable in
the projective plane. Negami’s conjecture remains open.
Due towork of Archdeacon, of Fellows andNegami, and of
Hliněný, it is known that Negami’s conjecture holds if and
only if 𝐾1,2,2,2 has no finite planar cover. Even though this
conjecture seems almost solved as it only requires check-
ing a property of a small graph, testing this property for
𝐾1,2,2,2 does not seem to be a finite problem. On the other
hand, if Negami’s conjecture is false, namely if there exist
graphs non-embeddable in the projective plane having pla-
nar covers, then it is unclear what those graphs look like.
A characterization of such graphs can be described by the
set 𝑆 such that every connected graph has no finite planar
cover if and only if it contains some graph in 𝑆 as a minor.
In joint work with Hliněný, Robin [6] gave an explicit de-
scription of a finite set 𝑇 and proved that 𝑆 is a subset of
𝑇.

Planar covers can also be used to construct minor-
minimal graphs with even branch-width. Branch-width is
a graph parameter that is asymptotically equivalent to tree-
width, and sometimes it ismore convenient to use. For any

fixed integer𝑤, graphswith branch-width atmost𝑤 form a
minor-closed family. So it is natural to ask what theminor-
minimal graphs with fixed branch-width are. A graph em-
bedded in a surface Σ is 𝑘-representative if every homotopi-
cally non-trivial closed curve in Σ intersects the embed-
ding at least 𝑘 times. This notion frequently appears in
the study of graphs embedded in surfaces. An embedded
graph isminor-minimally 𝑘-representative if it has no isolated
vertex and is 𝑘-representative, but contracting any edge or
deleting any edge makes it non-𝑘-representative. Randby
proved that every minor-minimally 𝑘-representative graph
embedded in the projective plane can be obtained from
the 𝑘 × 𝑘 projective grid by repeatedly taking Δ-𝑌 and 𝑌 -
Δ operations. So they can be constructed explicitly. Joint
with Inkmann, Robin provided an explicit construction of
minor-minimal graphs with even branch-width by show-
ing that for every integer 𝑘, if 𝐺 is a graph embedded
in the projective plane such that it is minor-minimally 𝑘-
representative, then the planar cover of 𝐺 obtained by lift-
ing is a minor-minimal graph of branch-width 2𝑘.

5. Matching Theory and Pfaffian Orientations
Matching theory is one of the most fundamental research
directions in graph theory and boosts the development of
combinatorial optimization. Robin made significant con-
tributions in this area, especially for those related to Pfaf-
fian orientations.

A matching in a graph is a set of edges that do not share
ends; a matching𝑀 in a graph 𝐺 is perfect if every vertex of
𝐺 is incident with an edge in𝑀. Given a bipartite graph 𝐺
with a bipartition (𝑋, 𝑌) with |𝑋| = |𝑌| = 𝑛, we can define
a 0-1 𝑛 × 𝑛 matrix 𝐴(𝐺) such that for any 1 ≤ 𝑖, 𝑗 ≤ 𝑛, the
(𝑖, 𝑗)-entry of 𝐴(𝐺) equals 1 if and only if the 𝑖-th vertex in
𝑋 is adjacent to the 𝑗-th vertex in 𝑌 . So a perfect match-
ing in 𝐺 corresponds to a permutation matrix whose (𝑖, 𝑗)-
entry is at most the (𝑖, 𝑗)-entry of 𝐴(𝐺), for any 𝑖, 𝑗. Hence
the number of perfect matchings in 𝐺 is the permanent of
𝐴(𝐺). Conversely, given a 0-1 square matrix 𝑊 , one can
construct a bipartite graph 𝐻 such that𝑊 = 𝐴(𝐻) and the
permanent of 𝑊 equals the number of the perfect match-
ings of𝐻. Hence computing the permanent of a 0-1matrix
is equivalent to computing the number of perfect match-
ings in a bipartite graph.

Even though the definitions of permanent and determi-
nant are similar, these two notions have significantly dif-
ferent behaviors. For example, computing the permanent
is #P-complete even when the matrix is a 0-1 matrix, but
computing the determinant can be done efficiently. Pólya
in 1913 asked what kind of square 0-1 matrix 𝐴 satisfies
the property that there exists a matrix 𝐵 obtained from 𝐴
by changing some of the 1’s to −1’s in such a way that the
determinant of 𝐵 equals the permanent of 𝐴. If such a
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Figure 8. A Pfaffian orientation of the cube.

matrix 𝐵 exists, we call it a Pólya matrix of 𝐴. Vazirani and
Yannakakis proved that a 0-1 square matrix has a Pólya
matrix if and only if the corresponding bipartite graph has
a Pfaffian orientation. A Pfaffian orientation of a graph 𝐺
is an orientation such that for every central even cycle 𝐶
in 𝐺, traversing 𝐶 in any direction sees an odd number
of edges with consistent direction and an odd number of
edges with opposite direction, where a subgraph 𝐻 of 𝐺
is central if 𝐺 − 𝑉(𝐻) has a perfect matching. (See Figure
8 for an example.) Hence Pólya’s question is equivalent
to characterizing the bipartite graphs that have a Pfaffian
orientation.

Little proved that a bipartite graph has a Pfaffian orien-
tation if and only if none of its central subgraph is isomor-
phic to an even subdivision of 𝐾3,3. Little’s characteriza-
tion is elegant, but it seems that it is not strong enough to
give a polynomial time algorithm for determining whether
a bipartite graph has a Pfaffian orientation. Joint with
Robertson and Seymour, Robin [15] proved a characteriza-
tion and gave a polynomial time algorithm to test whether
a bipartite graph has a Pfaffian orientation, and hence gave
a polynomial time algorithm to test whether a given 0-1
square matrix has a Pólya matrix. The following character-
ization for braces is the key theorem for their characteriza-
tion. (A brace is a bipartite graph 𝐺 such that any match-
ing of size 2 of 𝐺 is contained in a perfect matching of 𝐺;
a graph 𝐺0 is obtained from graphs 𝐺1 and 𝐺2 by a central
𝐶4-sum if 𝐺0 can be obtained from a disjoint union of 𝐺1
and 𝐺2 by identifying a central induced 4-cycle in 𝐺1 with
a central induced 4-cycle in 𝐺2 and deleting any number
of edges in the identified 4-cycle.)

Theorem 8 ([15]). A brace has a Pfaffian orientation if and
only if either it is isomorphic to the Heawood graph, or it can be
obtained from planar braces by repeatedly applying the central
𝐶4-sum.

(See Figure 9 for an illustration of the Heawood
graphs.)

The importance of braces comes from the work of Ed-
monds, Lovász, and Pulleybank about tight cut decom-
positions. They showed that any graph with every edge
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Figure 9. The Heawood graph.

contained in a perfectmatching admits no non-trivial tight
cut if and only if it is a brace or a brick. (A brick is a 3-
connected graph such that deleting any two distinct ver-
tices from it results in a graph that has a perfect match-
ing.) The decision problem about whether a graph has a
Pfaffian orientation can also be reduced to the problem
on braces and bricks. So the aforementioned characteriza-
tion for braces admitting a Pfaffian orientation leads to a
characterization for bipartite graphs admitting a Pfaffian
orientation. Hence, to complete the characterization for
graphs admitting a Pfaffian orientation, it suffices to con-
sider bricks. However, no such characterization that can
lead to a polynomial time algorithm for testing whether
a graph is Pfaffian or not is known. In joint work with
Norine, Robin made progress on understanding bricks. In
particular, they provided a structure theorem for bricks by
showing that every brick can be obtained from a graph in a
list of specific graphs by splitting vertices and adding edges
in a certain way.

6. Directed Graphs
We finish the outline of Robin’s research by mentioning
some of his work on directed graphs.

Let ℱ be a class of graphs or directed graphs. There are
two natural types of problems commonly asked in com-
binatorial optimization. One of them is a packing problem:
what is the maximum number 𝜈ℱ(𝐺) of disjoint subgraphs
of a graph or directed graph 𝐺 each isomorphic to a mem-
ber of ℱ? The other is a covering problem: what is the mini-
mumnumber 𝜏ℱ(𝐺) of vertices required to intersect all sub-
graphs of𝐺 isomorphic tomembers ofℱ? Many problems
in graph theory can be modeled as one of them. For exam-
ple, the maximum size of a matching of a graph 𝐺 is 𝜈ℱ(𝐺)
when ℱ = {𝐾2}; and the minimum size of a vertex-cover
of 𝐺 (another extensively studied notion) is 𝜏ℱ(𝐺) when
ℱ = {𝐾2}.

These two problems can be formulated as integer pro-
gramming problems, and they are dual to each other. Note
that 𝜈ℱ(𝐺) ≤ 𝜏ℱ(𝐺), as we need at least 𝜈ℱ(𝐺) vertices to in-
tersect 𝜈ℱ(𝐺) disjoint objects. But unlike linear program-
ming problems, 𝜏ℱ(𝐺) cannot be upper bounded in terms
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of 𝜈ℱ(𝐺) for generalℱ. One direction in graph theory is to
prove that certain classes ℱ do not have this bad property.

Formally, ℱ has the Erdős-Pósa property if there exists a
function 𝑓 such that for every graph (or directed graph) 𝐺,
𝜏ℱ(𝐺) ≤ 𝑓(𝜈ℱ(𝐺)). Having the Erdős-Pósa property has
advantages. For example, if one can efficiently approxi-
mate one of 𝜈ℱ(𝐺) and 𝜏ℱ(𝐺), then the Erdős-Pósa property
immediately gives an efficient approximation of the other.
For example, it is easy to show that {𝐾2} has the Erdős-Pósa
property with 𝑓(𝑥) = 2𝑥. So it gives a factor-2 approxima-
tion for the minimum size of a vertex-cover of a graph 𝐺
by simply finding the maximum size of a matching of 𝐺,
which can be done in polynomial time, even though find-
ing the exact value of the minimum size of a vertex-cover
is NP-hard.

A classical result of Erdős and Pósa states that the set
of all cycles has the Erdős-Pósa property. Younger in
1973 conjectured that the set of all directed cycles also
has the Erdős-Pósa property, where the special case for di-
rected graphs with no two disjoint directed cycles was in-
dependently conjectured by Gallai earlier. Joint with Reed,
Robertson, and Seymour, Robin [11] proved this conjec-
ture. We denote themaximumnumber of disjoint directed
cycles in 𝐷 by 𝜈(𝐷), and we denote the minimum number
of vertices in 𝐷 required to intersect all directed cycles by
𝜏(𝐷).

Theorem 9 ([11]). There exists a function 𝑓 such that 𝜏(𝐷) ≤
𝑓(𝜈(𝐷)) for every directed graph 𝐷.

Another interesting question is to characterize all di-
rected graphs 𝐷 with 𝜏(𝐷) = 𝜈(𝐷). This question proba-
bly has no nice answer. We consider the following weak-
ening: find the characterization for the directed graphs 𝐷
such that 𝜏(𝐷′) = 𝜈(𝐷′) for every subgraph 𝐷′ of 𝐷. We
say that 𝐷 packs if 𝜏(𝐷′) = 𝜈(𝐷′) for every subgraph 𝐷′ of 𝐷.
Note that this notion can be viewed as an analog of perfect
graphs, and it is related to minors of directed graphs.

There are many reasonable ways to define minors of
directed graphs. Here we only consider butterfly minors,
which is one of the most extensively studied notions for
directed graph minors. We say that a directed graph 𝐻
is a butterfly minor of another directed graph 𝐺 if 𝐻 can
be obtained from a subgraph of 𝐺 by repeatedly contract-
ing an edge that is either the unique out-going edge of its
tail or the unique in-going edge of its head. Note that the
edge-contractions mentioned in the definition of butterfly
minors preserve the strongly connected components. It
is also easy to see that every butterfly minor of a directed
graph that packs also packs. Hence one can characterize di-
rected graphs that pack by providing the minimal butterfly
minor obstructions.

The doubly directed cycle of length 𝑘 is the directed graph
obtained from the cycle of length 𝑘 by replacing each edge
by a pair of directed edges with opposite directions. It is
easy to see that the doubly directed cycle of length 𝑘 has
at most ⌊𝑘/2⌋ disjoint directed cycles and requires at least
⌈𝑘/2⌉ vertices to intersect all directed cycles. So doubly di-
rected cycles of odd length do not pack. Joint with Guenin,
Robin [5] proved that doubly directed cycles of odd length
and another special directed graph on 7 vertices, called 𝐹7,
are exactly the minimal butterfly minor obstructions for
directed graphs that pack.

Theorem 10 ([5]). A directed graph packs if and only if it does
not contain any doubly directed cycle of odd length or 𝐹7 as a
butterfly minor.

Note that 𝐹7 can be obtained from the Heawood graph
by certain operations. Those operations connect the no-
tions of directed graphs and perfect matchings in bipartite
graphs. In fact, the proof of Theorem10 uses the characteri-
zation of braces that have a Pfaffian orientationmentioned
in the previous section.

7. Leadership and Mentorship
Besides Robin’s remarkable mentorship witnessed by pro-
lific work joint with his students and postdocs mentioned
in previous sections, we briefly remark on Robin’s long-
term leadership for the ACO program.

The Algorithms, Combinatorics, and Optimization
(ACO) program at Georgia Tech is the oldest interdisci-
plinary PhD program at Georgia Tech founded around
1991. It is one of only two programs of their named
genre in the United States. (The other ACO program is
at Carnegie Mellon University created one or two years
earlier than the one at Georgia Tech.) The ACO program
highlights three rapidly growing areas of research: analy-
sis of algorithms, combinatorics, and discrete and combi-
natorial optimization. As we have seen in previous sec-
tions, Robin’s work spans all three areas and shows that
the boundary line between those areas is vague. Many fac-
ulties in different departments of Georgia Tech hadworked
on related areas since the 1970s, motivating the creation
of the ACO program with a unique curriculum design that
spans three academic units in Georgia Tech.

In 1993, Robin’s student, Daniel Sanders, became the
first graduate of the ACO program. Robin was the sec-
ond director of the ACO program, serving from 2006 to
2019. When Robin took over the position from the first di-
rector, Richard Duke, the ACO program was already well-
established in the sense that the concerns about its viabil-
ity and appeal to applicants with the highest quality had
essentially resolved. Robin not only maintained the pres-
tige of the ACO program but also elevated it. By 2011, the
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ACO program was considered an elite academic program
by any of the usual metrics. Today, 30 years after its estab-
lishment, the ACO program remains strong and thriving.
Robin’s long-term service and extraordinary contributions
from other affiliated faculties definitely played important
roles. ACO alumni gathered at Georgia Tech in 2017 to cel-
ebrate the 25th anniversary of the ACO program and gave
public talks. Many of them recalled their days at Georgia
Tech and the graph theory course taught by Robin. Indeed,
Robin was part of the daily life of an ACO person. We refer
readers to [9] for a history of the ACO program.

We close this article by including contributions from
some of Robin’s former students and postdocs that high-
light his excellent mentoring.

Luke Postle
As his PhD student, Robin taught me how to think about
research. An excellent researcher, Robin had a wonderful
taste in problems. While we both shared a love of graph
coloring, particularly the Four Color Theorem and all its
extensions and generalizations, Robin was always open to
a new problem if it was natural and well-motivated. Robin
taught me to never shy away from the hard problems of
mathematics but instead to embrace them, to believe that
problems worth working on are their own reward.

Robin also taught me the importance of communicat-
ing mathematical ideas. Through Robin’s guidance during
our many collaborations, I learned how to write mathe-
matics professionally, to understand that technical writing
was not about persuasion but precision. I learned that a
colleague reading my paper had to be able to reconstruct
exactly what I was doing without having me there to walk
them through it. For presentations, Robin instilled in me
that each slide should carry its own weight. Since I gradu-
ated in 2012, I have taken to heart all the lessons I learned
fromRobin. Robin shaped how I think aboutmathematics
and how I approach research, writing, and presentations.
To this day, I still find myself asking what would Robin
say?

Robin was the best mentor I ever had. I can honestly
say I would not be where I am today as a tenured professor
if it were not for Robin; indeed, I wonder sometimes if I
would even be inmath. Robin literally changedmy life but
he also changed me. He taught me many things but most
of all he taught me by example with his constant courage,
perseverance, and enthusiasm in the face of adversity.

Luke Postle is an associate professor at University of Waterloo. His email address
is lpostle@uwaterloo.ca.

Dan Král’
I first met Robin in 1999, during the symposium on Graph
Drawing in Prague where he gave an invited plenary talk
on graph planarity and related topics. I still remember his
talk today, which was given with crystal clarity whilst cov-
ering so many deep results from the theory of graph mi-
nors, a rapidly emerging area at that time. In 2001, Robin
gave an invited talk at the first workshop of the GROW se-
ries and during this workshop, I became engrossed in a
detailed discussion with Robin concerning the extension
of Erdős-Posa type results on planar graphs (that I had ob-
tained earlier) to surfaces of higher genus. It was extremely
impressive how broad and deep Robin’s knowledge was,
not only of graph theory, but across the entire field of
mathematics. This made me realize the importance of see-
ing mathematics in its unity and led me to devote a signifi-
cant amount of timewhile working onmy PhD to learning
topics from other areas of mathematics and computer sci-
ence, even if I did not intend to do any research in those
areas. In 2005, I was honored to become Robin’s postdoc
and the year that I spent at Georgia Tech really changed
the direction of my research career. Of course, I learnt a
lot from graph theory while working with Robin but it was
his open-minded approach to mathematics, graph theory
in particular, and the routine involvement of computers
in his work which have served as a huge source of inspi-
ration during my academic career. However, Robin was
not only an outstanding researcher but also an excellent
teacher as I witnessed duringmy postdoc stay and frequent
subsequent visits to Georgia Tech. He paid extreme atten-
tion to the delivery of material in his classes and I am sure
he would not mind me sharing a brief story related to this.
Once whilst having lunchwith Robin, a student that Robin
had taught a couple of years earlier came to thank him for
conducting the class in such a way that he could build so
much upon it in his forthcoming years at Georgia Tech.
Certainly in my view, this is one of the greatest accolades
a teacher can receive! Robin was, and still is, a source of
inspiration for my academic work and, until his untimely
passing, I continued to consult him for scientific advice on
variousmatters. I stay verymuch indebted to Robin for the
amount I learnt from him, his overall support and a great
deal of inspiration, all of which are impossible to compre-
hend in words.

Dan Král’ is a Donald Ervin Knuth Professor at Masaryk University and a hon-
orary professor at University of Warwick. His email address is dkral@fi.muni
.cz.
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