Paper The following article is Open access

Identification of Sharp Edge Non-Slender Delta Wing Aerodynamic Coefficient Using Neural Network

, , , and

Published under licence by IOP Publishing Ltd
, , Citation Fahmi Izzuddin Abdul Rahman et al 2021 J. Phys.: Conf. Ser. 2129 012086 DOI 10.1088/1742-6596/2129/1/012086

1742-6596/2129/1/012086

Abstract

Delta wing formed a vortical flow on its surface which produced higher lift compared to conventional wing. The vortical flow is complex and non-linear which requires more studies to understand its flow physics. However, conventional flow analysis (wind tunnel test and computational flow dynamic) comes with several significant drawbacks. In recent times, application of neural network as alternative to conventional flow analysis has increased. This study is about utilization of Multi-Layer Perceptron (MLP) neural network to predict the coefficient of pressure (Cp) on a delta wing model. The physical model that was used is a sharp edge non-slender delta wing. The training data was taken from wind tunnel tests. 70% of data is used as training, 15% is used as validation and another 15% is used as test set. The wind tunnel test was done at angle of attack from 0°-18° with increment of 3°. The flow velocity was set at 25m/s which correspond to 800,000 Reynolds number. The inputs are angle of attack and location of pressure tube (y/cr) while the output is Cp. The MLP models were fitted with 3 different transfer functions (linear, sigmoid, and tanh) and trained with Lavenberg-Marquadt backpropagation algorithm. The results of the models were compared to determine the best performing model. Results show that large amount of data is required to produce accurate prediction model because the model suffer from condition called overfitting.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/2129/1/012086