Paper The following article is Open access

DES vs RANS: The flatback airfoil case

, , and

Published under licence by IOP Publishing Ltd
, , Citation George Papadakis et al 2020 J. Phys.: Conf. Ser. 1618 052062 DOI 10.1088/1742-6596/1618/5/052062

1742-6596/1618/5/052062

Abstract

Using flatback airfoils at the root of wind turbine (WT) blades is becoming more popular as the WTs increase in size. The reason is that they provide significant aerodynamic, aeroelastic and structural benefits. However, due to the blunt trailing edge (TE), the wake of such airfoils is highly unsteady and rich in three-dimensional vortical structures. This poses significant challenges on the numerical simulation of the flow around them, given the highly unsteady, three-dimensional turbulent character of their wake. In this work, computational predictions for a flatback airfoil employing both RANS and DES approaches on three successively refined grids up to 25 million cells are compared with available experimental data. Results suggest that even though URANS and DDES are in good agreement in terms of lift and drag, RANS simulations fail to accurately capture the turbulent wake unsteady characteristics.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/1618/5/052062