A wafer-level 3D packaging structure with Benzocyclobutene as a dielectric for multichip module fabrication

, , and

2009 Chinese Institute of Electronics
, , Citation Geng Fei et al 2009 J. Semicond. 30 106003 DOI 10.1088/1674-4926/30/10/106003

1674-4926/30/10/106003

Abstract

A new wafer-level 3D packaging structure with Benzocyclobutene (BCB) as interlayer dielectrics (ILDs) for multichip module fabrication is proposed for application in the Ku-band wave. The packaging structure consists of two layers of BCB films and three layers of metallized films, in which the monolithic microwave IC (MMIC), thin film resistors, striplines and microstrip lines are integrated. Wet etched cavities fabricated on the silicon substrate are used for mounting active and passive components. BCB layers cover the components and serve as ILDs for interconnections. Gold bumps are used as electric interconnections between different layers, which eliminates the need to prepare vias by costly dry etching and deposition processes. In order to get high-quality BCB films for the subsequent chemical mechanical planarization (CMP) and multilayer metallization processes, the BCB curing profile is optimized and the roughness of the BCB film after the CMP process is kept lower than 10 nm. The thermal, mechanical and electrical properties of the packaging structure are investigated. The thermal resistance can be controlled below 2 °C/W. The average shear strength of the gold bumps on the BCB surface is around 70 N/mm2. The performances of MMIC and interconnection structure at high frequencies are optimized and tested. The S-parameters curves of the packaged MMIC shift slightly showing perfect transmission character. The insertion loss change after the packaging process is less than 1 dB range at the operating frequency and the return loss is less than –8 dB from 10 to 15 GHz.

Export citation and abstract BibTeX RIS

10.1088/1674-4926/30/10/106003