Paper The following article is Open access

Electronic structure and optical properties of Na2KSb and NaK2Sb from first-principles many-body theory

, and

Published 13 July 2021 © 2021 The Author(s). Published by IOP Publishing Ltd
, , Citation Raymond Amador et al 2021 J. Phys.: Condens. Matter 33 365502 DOI 10.1088/1361-648X/ac0e70

0953-8984/33/36/365502

Abstract

In the search for novel materials for vacuum electron sources, multi-alkali antimonides and in particular sodium-potassium-antimonides have been recently regarded as especially promising due to their favorable electronic and optical properties. In the framework of density-functional theory and many-body perturbation theory, we investigate the electronic structure and the dielectric response of two representative members of this family, namely Na2KSb and NaK2Sb. We find that both materials have a direct gap, which is on the order of 1.5 eV in Na2KSb and 1.0 eV in NaK2Sb. In either system, valence and conduction bands are dominated by Sb states with p- and s-character, respectively. The imaginary part of the dielectric function, computed upon explicit inclusion of electron–hole interactions to characterize the optical response of the materials, exhibits maxima starting from the near-infrared region, extending up to the visible and the ultraviolet band. With our analysis, we clarify that the lowest-energy excitations are non-excitonic in nature and that their binding energy is on the order of 100 meV. Our results confirm the potential of Na2KSb and NaK2Sb as photoemissive materials for vacuum electron sources, photomultipliers, and imaging devices.

Export citation and abstract BibTeX RIS

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.