Brought to you by:

Field-cycled dynamic nuclear polarization (FC-DNP) of 14N and 15N nitroxide radicals at low magnetic field

, , , and

Published 30 August 2007 2007 IOP Publishing Ltd
, , Citation C Polyon et al 2007 J. Phys. D: Appl. Phys. 40 5527 DOI 10.1088/0022-3727/40/18/002

0022-3727/40/18/5527

Abstract

Theoretical Overhauser-detected EPR spectra of 14N and 15N nitroxide systems in low magnetic field by field-cycled dynamic nuclear polarization (FC-DNP) were described by a combination of DNP theory and a model of FC-DNP. Spectra were simulated at magnetic fields between 0 and 8 mT. The simulations were able to predict both the EPR peak positions and their amplitudes, corresponding to those from FC-DNP experiments with 14N and 15N TEMPOL solutions. EPR irradiation was in the 45–133 MHz range while NMR signal detection occurred at a field of 59 mT. At this frequency range, four π transitions of a 14N system and three π transitions of a 15N system were observed. The simulation programmes were also used to predict the spectral amplitudes of the FC-DNP with EPR irradiation power in the 1–15 W range. Theoretical FC-DNP systems were in good agreement with experimental results; however, at low magnetic fields the inhomogeneity of our magnet system resulted in the EPR peaks being left-shifted and somewhat broader than those from the theoretical prediction.

Export citation and abstract BibTeX RIS

Please wait… references are loading.
10.1088/0022-3727/40/18/002