Brought to you by:

The Nature of p-Modes and Granulation in Procyon: New MOST* Photometry and New Yale Convection Models

, , , , , , , , , , , , and

© 2008. The American Astronomical Society. All rights reserved. Printed in U.S.A.
, , Citation D. B. Guenther et al 2008 ApJ 687 1448 DOI 10.1086/592060

0004-637X/687/2/1448

Abstract

We present new photometry of Procyon, obtained by MOST during a 38 day run in 2007, and frequency analyses of those data. The long time coverage and low point-to-point scatter of the light curve yield an average noise amplitude of about 1.5-2.0 ppm in the frequency range 500-1500 μHz. This is half the noise level obtained from each of the previous two Procyon campaigns by MOST in 2004 and 2005. The 2007 MOST amplitude spectrum shows some evidence for p-mode signal: excess power centered near 1000 μHz and an autocorrelation signal near 55 μHz (suggestive of a mode spacing around that frequency), both consistent with p-mode model predictions. However, we do not see regularly spaced frequencies aligned in common l-valued ridges in echelle diagrams of the most significant peaks in the spectrum unless we select modes from the spectrum using a priori assumptions. The most significant peaks in the spectrum are scattered by more than ±5 μHz about the predicted l-valued ridges, a value that is consistent with the scatter among individually identified frequencies obtained from ground-based radial velocity (RV) observations. We argue that the observed scatter is intrinsic to the star, due to short lifetimes of the modes and the dynamic structure of Procyon's thin convection zone. We compare the MOST Procyon amplitude and power density spectra with preliminary results of three-dimensional numerical models of convection by the Yale group. These models show that, unlike in the Sun, Procyon's granulation signal in luminosity has a peak coinciding with the expected frequency region for p-modes near 1000 μHz.

Export citation and abstract BibTeX RIS

Footnotes

  • Based on data from the MOST satellite, a Canadian Space Agency mission, jointly operated by Dynacon, Inc., the University of Toronto Institute of Aerospace Studies, and the University of British Columbia, with the assistance of the University of Vienna.

Please wait… references are loading.
10.1086/592060