Skip to main content
Log in

Dynamic imaging of cerebellar Purkinje cells reveals a population of filopodia which cross-link dendrites during early postnatal development

  • Original Article
  • Scientific Papers
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Two-photon microscopy was used to image dye-loaded filopodia of Purkinje cells in acute rat cerebellar slices. In the process of examining filopodia in Purkinje cells from a period of rapid dendritic growth (P10-21), we observed a small subset of filopodia which appeared to form connections between two dendrites of the same cell, usually between the tips of two adjacent dendrites or the tip of a dendrite and the shaft of another. There were fewer of these ‘filopodial bridges’ present at P18-21 than at an earlier stage in development (P10-12) and they were absent in mature Purkinje cells. Filopodial bridges do not appear to be an artifact of living brain slice preparation as they may also be seen by dye-loading Purkinje cells in slices prepared from perfusion-fixed brain. They have varied morphologies which are mostly similar to conventional, unattached filopodia. However, when measured over tens of minutes, filopodial bridges were observed to be less motile than conventional filopodia as indicated by a reduced index of expansion. While the functions of these novel structures are unknown it is attractive to speculate that they play an instructive role in Purkinje cell dendritic development

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hausser M, Spruston N, Stuart GJ. Diversity and dynamics of dendritic signaling. Science. 2000;290:739–44.

    Article  PubMed  CAS  Google Scholar 

  2. Hausser M, Mel B. Dendrites: Bug or feature? Curr Opin Neurobiol. 2003;13:372–83.

    Article  PubMed  CAS  Google Scholar 

  3. Wong RO, Ghosh A. Activity-dependent regulation of dendritic growth and patterning. Nat Rev Neurosci. 2002;3: 803–12.

    Article  PubMed  CAS  Google Scholar 

  4. Scott EK, Luo L. How do dendrites take their shape? Nat Neurosci. 2001;4:359–65.

    Article  PubMed  CAS  Google Scholar 

  5. McAllister AK. Cellular and molecular mechanisms of dendrite growth. Cereb Cortex. 2000;10:963–73.

    Article  PubMed  CAS  Google Scholar 

  6. Jan YN, Jan LY. Dendrites. Genes Dev. 2001;15:2627–41.

    Article  PubMed  CAS  Google Scholar 

  7. Jan YN, Jan LY. The control of dendrite development. Neuron. 2003;40:229–42.

    Article  PubMed  CAS  Google Scholar 

  8. Whitford KL, Dijkhuizen P, Polleux F, Ghosh A. Molecular control of cortical dendrite development. Annu Rev Neurosci. 2002;25:127–49.

    Article  PubMed  CAS  Google Scholar 

  9. Morest DK. The growth of dendrites in the mammalian brain. Z Anat Entwicklungsgesch. 1969;128:290–317.

    Article  PubMed  CAS  Google Scholar 

  10. Niell CM, Meyer MP, Smith SJ. In vivo imaging of synapse formation on a growing dendritic arbor. Nat Neurosci. 2004; 7:254–60.

    Article  PubMed  CAS  Google Scholar 

  11. Dailey ME, Smith SJ. The dynamics of dendritic structure in developing hippocampal slices. J Neurosci. 1996;16:2983–94.

    PubMed  CAS  Google Scholar 

  12. Portera-Cailliau C, Pan DT, Yuste R. Activity-regulated dynamic behavior of early dendritic protrusions: evidence for different types of dendritic filopodia. J Neurosci. 2003;23: 7129–42.

    PubMed  CAS  Google Scholar 

  13. Maletic-Savatic M, Malinow R, Svoboda K. Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science. 1999;283:1923–7.

    Article  PubMed  CAS  Google Scholar 

  14. Wang H, Macagno ER. The establishment of peripheral sensory arbors in the leech: In vivo time-lapse studies reveal a highly dynamic process. J Neurosci. 1997;17:2408–19.

    PubMed  CAS  Google Scholar 

  15. Trachtenberg JT, Chen BE, Knott GW, Feng G, Sanes JR, Welker E, et al. Long-term in vivo imaging of experiencedependent synaptic plasticity in adult cortex. Nature. 2002;420:788–94.

    Article  PubMed  CAS  Google Scholar 

  16. Grutzendler J, Kasthuri N, Gan WB. Long-term dendritic spine stability in the adult cortex. Nature. 2002;420:812–6.

    Article  PubMed  CAS  Google Scholar 

  17. Vaughn JE. Fine structure of synaptogenesis in the vertebrate central nervous system. Synapse. 1989;3:255–85.

    Article  PubMed  CAS  Google Scholar 

  18. Fiala JC, Feinberg M, Popov V, Harris KM. Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. J Neurosci. 1998;18:8900–11.

    PubMed  CAS  Google Scholar 

  19. Petrak LJ, Harris KM, Kirov SA. Synaptogenesis on mature hippocampal dendrites occurs via filopodia and immature spines during blocked synaptic transmission. J Comp Neurol. 2005;484:183–90.

    Article  PubMed  Google Scholar 

  20. Ziv NE, Smith SJ. Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron. 1996;17:91–102.

    Article  PubMed  CAS  Google Scholar 

  21. Fischer M, Kaech S, Knutti D, Matus A. Rapid actin-based plasticity in dendritic spines. Neuron. 1998;20:847–54.

    Article  PubMed  CAS  Google Scholar 

  22. Roelandse M, Welman A, Wagner U, Hagmann J, Matus A. Focal motility determines the geometry of dendritic spines. Neuroscience. 2003;121:39–49.

    Article  PubMed  CAS  Google Scholar 

  23. Napper RM, Harvey RJ. Number of parallel fiber synapses on an individual Purkinje cell in the cerebellum of the rat. J Comp Neurol. 1988;274:168–77.

    Article  PubMed  CAS  Google Scholar 

  24. Strata P, Rossi F. Plasticity of the olivocerebellar pathway. Trends Neurosci. 1998;21:407–13.

    Article  PubMed  CAS  Google Scholar 

  25. Jaeger D, De Schutter E, Bower JM. The role of synaptic and voltage-gated currents in the control of Purkinje cell spiking: a modeling study. J Neurosci. 1997;17:91–106.

    PubMed  CAS  Google Scholar 

  26. Xu-Friedman MA, Harris KM, Regehr WG. Threedimensional comparison of ultrastructural characteristics at depressing and facilitating synapses onto cerebellar Purkinje cells. J Neurosci. 2001;21:6666–72.

    PubMed  CAS  Google Scholar 

  27. Sotelo C. Cerebellar synaptogenesis: what we can learn from mutant mice. J Exp Biol. 1990;153:225–49.

    PubMed  CAS  Google Scholar 

  28. Berry M, Bradley P. The growth of the dendritic trees of Purkinje cells in the cerebellum of the rat. Brain Res. 1976;112:1–35.

    Article  PubMed  CAS  Google Scholar 

  29. Del Cerro MP, Snider RS. Studies on the developing cerebellum. Ultrastructure of the growth cones. J Comp Neurol. 1968;133:341–62.

    Article  PubMed  Google Scholar 

  30. Dunaevsky A, Tashiro A, Majewska A, Mason C, Yuste R. Developmental regulation of spine motility in the mammalian central nervous system. Proc Natl Acad Sci USA. 1999;96:13438–43.

    Article  PubMed  CAS  Google Scholar 

  31. Harris KM, Kater SB. Dendritic spines: Cellular specializations imparting both stability and flexibility to synaptic function. Annu Rev Neurosci. 1994;17:341–71.

    Article  PubMed  CAS  Google Scholar 

  32. Wallace W, Bear MF. A morphological correlate of synaptic scaling in visual cortex. J Neurosci. 2004;24:6928–38.

    Article  PubMed  CAS  Google Scholar 

  33. Vecellio M, Schwaller B, Meyer M, Hunziker W, Celio MR. Alterations in Purkinje cell spines of calbindin D-28 k and parvalbumin knock-out mice. Eur J Neurosci. 2000;12: 945–54.

    Article  PubMed  CAS  Google Scholar 

  34. Konur S, Rabinowitz D, Fenstermaker VL, Yuste R. Systematic regulation of spine sizes and densities in pyramidal neurons. J Neurobiol. 2003;56:95–112.

    Article  PubMed  Google Scholar 

  35. Wallace W, Schaefer LH, Swedlow JR. A working person’s guide to deconvolution in light microscopy. Biotechniques. 2001;31:1076–8, 1080, 1082 passim.

    PubMed  CAS  Google Scholar 

  36. Altman J, Bayer SA. Development of the cerebellar system: In relation to its evolution, structure, and functions. Boca Raton: CRC Press; 1997.

    Google Scholar 

  37. Kirov SA, Petrak LJ, Fiala JC, Harris KM. Dendritic spines disappear with chilling but proliferate excessively upon rewarming of mature hippocampus. Neuroscience. 2004;127: 69–80.

    Article  PubMed  CAS  Google Scholar 

  38. Kirov SA, Sorra KE, Harris KM. Slices have more synapses than perfusion-fixed hippocampus from both young and mature rats. J Neurosci. 1999;19:2876–86.

    PubMed  CAS  Google Scholar 

  39. Fiala JC, Kirov SA, Feinberg MD, Petrak LJ, George P, Goddard CA, et al. Timing of neuronal and glial ultrastructure disruption during brain slice preparation and recovery in vitro. J Comp Neurol. 2003;465:90–103.

    Article  PubMed  Google Scholar 

  40. Mori M, Matsushima T. Post-hatch development of dendritic arborization in cerebellar Purkinje neurons of quail chicks: A morphometric study. Neurosci Lett. 2002;329:73–6.

    Article  PubMed  CAS  Google Scholar 

  41. Takacs J, Hamori J. Developmental dynamics of Purkinje cells and dendritic spines in rat cerebellar cortex. J Neurosci Res. 1994;38:515–30.

    Article  PubMed  CAS  Google Scholar 

  42. Lendvai B, Stern EA, Chen B, Svoboda K. Experiencedependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature. 2000;404:876–81.

    Article  PubMed  CAS  Google Scholar 

  43. Dunaevsky A, Blazeski R, Yuste R, Mason C. Spine motility with synaptic contact. Nat Neurosci. 2001;4:685–6.

    Article  PubMed  CAS  Google Scholar 

  44. Robinson DN, Cooley L. Stable intercellular bridges in development: the cytoskeleton lining the tunnel. Trends Cell Biol. 1996;6:474–9.

    Article  PubMed  CAS  Google Scholar 

  45. Witkin JW, O’Sullivan H, Silverman AJ. Novel associations among gonadotropin-releasing hormone neurons. Endocrinology. 1995;136:4323–30.

    Article  PubMed  CAS  Google Scholar 

  46. Yamada K, Fukaya M, Shibata T, Kurihara H, Tanaka K, Inoue Y, et al. Dynamic transformation of Bergmann glial fibers proceeds in correlation with dendritic outgrowth and synapse formation of cerebellar Purkinje cells. J Comp Neurol. 2000;418:106–20.

    Article  PubMed  CAS  Google Scholar 

  47. MacNeil MA, Masland RH. Extreme diversity among amacrine cells: Implications for function. Neuron. 1998;20: 971–82.

    Article  PubMed  CAS  Google Scholar 

  48. Wassle H, Peichl L, Boycott BB. Dendritic territories of cat retinal ganglion cells. Nature. 1981;292:344–5.

    Article  PubMed  CAS  Google Scholar 

  49. Blackshaw SE, Nicholls JG, Parnas I. Expanded receptive fields of cutaneous mechanoreceptor cells after single neurone deletion in leech central nervous system. J Physiol. 1982; 326:261–8.

    PubMed  CAS  Google Scholar 

  50. Emoto K, He Y, Ye B, Grueber WB, Adler PN, Jan LY, et al. Control of dendritic branching and tiling by the Tricorneredkinase/Furry signaling pathway in Drosophila sensory neurons. Cell. 2004;119:245–56.

    Article  PubMed  CAS  Google Scholar 

  51. Grueber WB, Jan LY, Jan YN. Tiling of the Drosophila epidermis by multidendritic sensory neurons. Development. 2002;129:2867–78.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sdrulla, A.D., Linden, D.J. Dynamic imaging of cerebellar Purkinje cells reveals a population of filopodia which cross-link dendrites during early postnatal development. Cerebellum 5, 105–115 (2006). https://doi.org/10.1080/14734220600620908

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220600620908

Key words

Navigation