Abstract

Human Cyclin T1 is the cyclin partner of kinase CDK9 in the positive transcription elongation factor b (P-TEFb). P-TEFb is recruited by Tat, the transactivator of the human immunodeficiency virus type 1 (HIV-1), to the viral promoter by direct interactions between Tat, Cyclin T1 and the cis-acting transactivation-responsive region (TAR) present at the 5′-end of each viral mRNA. At present, no structural data for Cyclin T1 are available. Here, we build a structural model of an N-terminus portion of Cyclin T1 (aa 27–263) based on the X-ray structure of Cyclin H. The model is compared with site directed mutagenesis data from the literature and validated by fluorescence resonance energy transfer (FRET) using Tat as a probe in living cells. This model provides a first step towards the structural characterization of the CDK9–CycT1–Tat-TAR complex, which is crucial for HIV-1 replication and may constitute a promising target for pharmaceutical intervention.