Skip to main content

Advertisement

Log in

Neuroprotective potential of ionotropic glutamate receptor antagonists

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

From the therapeutic point of view, the real challenge is not only to improve the symptoms, but to interfere with the pathomechanism of the disease. That is why a considerable interest has recently been devoted to developing glutamate receptors antagonists (mainly of the NMDA type) for acute and chronic neurodegeneration. Developing such a treatment that slows down the progression of the disease is extremely time and costs consuming. At present there is consensus that competitive NMDA receptor antagonists will not find therapeutic applications, in contrast to agents acting at the glycineB site, or channel blockers. Recently, at least seven glycineB antagonists (e.g. ACEA 1021, GV-150526, GV-196771A, ZD-9379, MRZ 2/576) and over 10 NMDA channel blockers (e.g. Remacemide, ARL-15896AR, HU-211, ADCI, CNS-5161, Neramexane-MRZ 2/579) have been under development, most of them as neuroprotective agents for acute (stroke, trauma) or chronic insult (e.g. Huntington’s or Alzheimer’s disease). Several substances selective for NR2B NMDA receptor subtypes such as: eliprodil, CP-101606 and Ro-25-6981 have been claimed to have a good neuroprotective profile. This presentation is an attempt to critically review preclinical and scarce clinical experience in the development of new NMDA receptor antagonists as neuroprotective agents according to the following scheme: rational, preclinical findings in animal models and finally clinical experience if available. The general impression is that NMDA receptor antagonists may find use in chronic type of neurodegeneration while AMPA antagonists seems to show better promise in acute insult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal, S.K. and Fehlings, M.G. (1997) “Role of NMDA and non-NMDA ionotropic glutamate receptors in traumatic spinal cord axonal injury”, J. Neurosci. 17, 1055–1063.

    PubMed  CAS  Google Scholar 

  • Benazzouz, A., Boraud, T., Dubedat, P., Boireau, A., Stutzmann, J.M. and Gross, C. (1995) “Riluzole prevents MPTP-induced Parkinsonism in the rhesus monkey: a pilot study”, Eur. J. Pharmacol. 284, 299–307.

    Article  PubMed  CAS  Google Scholar 

  • Bensimon, G., Lacomblez, L. and Meninger, V.A. (1994) “A controlled trial of Riluzole in amyotrophic sclerosis”, N. Engl. J. Med. 330, 585–591.

    Article  PubMed  CAS  Google Scholar 

  • Benveniste, H., Drejer, J., Schusboe, A. and Diemer, N.H. (1984) “Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis”, J. Neurochem. 43, 1369–1374.

    Article  PubMed  CAS  Google Scholar 

  • Bernert, H. and Turski, L. (1996) “Traumatic brain damage prevented by the non-N-methyl-d-aspartate antagonist 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo[f]quinoxaline”, Proc. Natl. Acad. Sci. USA 93, 5235–5240.

    Article  PubMed  CAS  Google Scholar 

  • Bezard, E., Stutzmann, J.M., Imbert, C., Boraud, T., Boireau, A. and Gross, C.E. (1998) “Riluzole delayed appearance of parkinsonian motor abnormalities in a chronic MPTP monkey model”, Eur. J. Pharmacol. 356, 101–104.

    Article  PubMed  CAS  Google Scholar 

  • Blandini, F. and Greenamyre, J.T. (1998) “Prospects of glutamate antagonists in the therapy of Parkinson’s disease”, Fund. Clin. Pharmacol. 12, 4–12.

    CAS  Google Scholar 

  • Blandini, F., GarciaOsuna, M. and Greenamyre, J.T. (1997) “Subthalamic ablation reverses changes in basal ganglia oxidative metabolism and motor response to apomorphine induced by nigrostriatal lesion in rats”, Eur. J. Neurosci. 9, 1407–1413.

    Article  PubMed  CAS  Google Scholar 

  • Blin, O., Azulay, J.P., Desnuelle, C., Billé-Turc, F., Braguer, D., Besse, D., Branger, E., Crevat, A., Serratrice, G. and Pouget, J.Y. (1996) “A controlled one-year trial of Dextromethorphan in amyotrophic lateral sclerosis”, Clin. Neuropharmacol. 19, 189–192.

    Article  PubMed  CAS  Google Scholar 

  • Brorson, J.R., Bindokas, V.P., Iwama, T., Marcuccilli, C.J., Chisholm, J.C. and Miller, R.J. (1995) “The Ca2+ influx induced by betaamyloid peptide 25–35 in cultured hippocampal neurons results from network excitation”, J. Neurobiol. 26, 325–338.

    Article  PubMed  CAS  Google Scholar 

  • Browne, S.E., Bowling, A.C., MacGarvey, U., Baik, M.J., Berger, S.C., Muqit, M.M.K., Bird, E.D. and Beal, M.F. (1997) “Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia”, Ann. Neurol. 41, 646–653.

    Article  PubMed  CAS  Google Scholar 

  • Bullock, R., Zauner, A., Woodward, J. and Young, H.F. (1995) “Massive persistent release of excitatory amino acids following human occlusive stroke”, Stroke 26, 2187–2189.

    PubMed  CAS  Google Scholar 

  • Castillo, J., Davalos, A. and Noya, M. (1997) “Progression of ischaemic stroke and excitotoxic amino acids”, Lancet 349, 79–83.

    Article  PubMed  CAS  Google Scholar 

  • Choi, D.W. (1995) “Calcium: still center-stage in hypoxic-ischemic neuronal death”, Trends Neurosci. 18, 58–60.

    Article  PubMed  CAS  Google Scholar 

  • Couratier, P., Hugon, J., Sindou, P., Vallat, J.M. and Dumas, M. (1993) “Cell culture evidence for neuronal degeneration in amyotrophic lateral sclerosis being linked to glutamate AMPA/kainate receptors”, Lancet 341, 265–268.

    Article  PubMed  CAS  Google Scholar 

  • Danysz, W., Parsons, C.G., Bresink, I. and Quack, G. (1995) “Glutamate in CNS disorders—a revived target for drug development”, Drug News Perspect. 8, 261–277.

    Google Scholar 

  • Davis, S.M., Lees, K.R., Albers, G.W., Diener, H.C., Markabi, S., Karlsson, G. and Norris, J. (2000) “Selfotel in acute ischemic stroke: possible neurotoxic effects of an NMDA antagonist”, Stroke 31, 347–354.

    PubMed  CAS  Google Scholar 

  • Duhaime, A.C., Gennarelli, L.M. and Boardman, C. (1996) “Neuroprotection by dextromethorphan in acute experimental subdural hematoma in the rat”, J. Neurotrauma 13, 79–84.

    Article  PubMed  CAS  Google Scholar 

  • Eisen, A., Stewart, H., Schulzer, M. and Cameron, D. (1993) “Antiglutamate therapy in amyotrophic lateral sclerosis—a trial using lamotrigine”, Can. J. Neurol. Sci. 20, 297–301.

    PubMed  CAS  Google Scholar 

  • Faden, A.I. (1992) “Dynorphin increases extracellular levels of excitatory amino acids in the brain through a non-opioid mechanism”, J. Neurosci. 12, 425–429.

    PubMed  CAS  Google Scholar 

  • Gill, R. (1994) “The pharmacology of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) kainate antagonists and their role in cerebral ischaemia”, Cerebrovasc. Brain Metab. Rev. 6, 225–256.

    PubMed  CAS  Google Scholar 

  • Gill, R., Kemp, J.A., Richards, J.G. and Kew, J.N.C. (1999) “NMDA receptor antagonists: past disappointments and future prospects as neuroprotective agents”, Curr. Opin. Cardiovasc. Pulmonary Renal Invest. Drugs 1, 576–591.

    CAS  Google Scholar 

  • Ginsberg, M.D. (1995a) “Neuroprotection in brain ischemia: an update (part I)”, The Neuroscientist 1, 95–103.

    Article  Google Scholar 

  • Ginsberg, M.D. (1995b) “Neuroprotection in brain ischemia: an update (part II)”, The Neuroscientist 1, 164–175.

    Article  Google Scholar 

  • Giulian, D., Haverkamp, L.J., Li, J., Karshin, W.L., Yu, J., Tom, D., Li, X. and Kirkpatrick, J.B. (1995) “Senile plaques stimulate microglia to release a neurotoxin found in alzheimer brain”, Neurochem. Int. 27, 119–137.

    Article  PubMed  CAS  Google Scholar 

  • Globus, M.Y.T., Busto, R., Dietrich, W.D., Martinez, E., Valdes, I. and Ginsberg, M.D. (1988) “Effect of ischemia on the in vivo release of striatal dopamine, glutamate, and y-aminobutyric acid studied in intracerebral microdialysis”, J. Neurochem. 51, 1455–1464.

    Article  PubMed  CAS  Google Scholar 

  • Gredal, O., Werdelin, L., Bak, S., Christensen, P.B., Boysen, G., Kristensen, M.O., Jespersen, J.H., Regeur, L., Hinge, H.H. and Jensen, T.S. (1997) “A clinical trial of dextromethorphan in amyotrophic lateral sclerosis”, Acta Neurol. Scand. 96, 8–13.

    Article  PubMed  CAS  Google Scholar 

  • Greenamyre, J.T. and O’Brien, C.F. (1991) “N-methyl-d-aspartate antagonists in the treatment of Parkinson’s disease”, Arch. Neurol. 48, 977–981.

    PubMed  CAS  Google Scholar 

  • Greenamyre, J.T., Maragos, E.F., Albin, R.L., Penney, J.B. and Young, A.B. (1988) “Glutamate transmission and toxicity in Alzheimer’s disease”, Prog. Neuro-Psych. Biol. Psych. 12, 421–430.

    Article  CAS  Google Scholar 

  • Greene, J.G. and Greenamyre, J.T. (1995) “Characterization of the excitotoxic potential of the reversible succinate dehydrogenase inhibitor malonate”, J. Neurochem. 64, 430–436.

    Article  PubMed  CAS  Google Scholar 

  • Hazell, A.S., Itzhak, Y., Liu, H.P. and Norenberg, M.D. (1997) “1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) decreases glutamate uptake in cultured astrocytes”, J. Neurochem. 68, 2216–2219.

    PubMed  CAS  Google Scholar 

  • Horn, M. and Schlote, W. (1992) “Delayed neuronal death and delayed neuronal recovery in the human brain following global ischemia”, Acta Neuropathol. 85, 79–87.

    Article  PubMed  CAS  Google Scholar 

  • Hugon, J., Vallat, J.M., Spencer, P.S., Leboutet, M.J. and Barthe, D. (1989) “Kainic acid induces early and delayed degenerative neuronal changes in rat spinal cord”, Neurosci. Lett. 104, 258–262.

    Article  PubMed  CAS  Google Scholar 

  • Ikonomidou, C. and Turski, L. (1996) “Prevention of traumainduced neurodegeneration in infant and adult rat brain: glutamate antagonists”, Metab. Brain Dis. 11, 125–141.

    Article  PubMed  CAS  Google Scholar 

  • Kanthan, R. and Shuaib, A. (1995) “Clinical evaluation of extracellular amino acids in severe head trauma by intracerebral in vivo microdialysis”, J. Neurol. Neurosurg. Psychiatry 59, 326–327.

    Article  PubMed  CAS  Google Scholar 

  • Kieburtz, K. (1999) “Antiglutamate therapies in Huntington’s disease”, J. Neural Transm. Suppl. 55, 97–102.

    PubMed  CAS  Google Scholar 

  • Kleiser, B., Diepers, M., Geiger, S., Horn, E., Gleitz, J., Peters, T. and Kornhuber, H.H. (1995) “Combined therapy with flunarizine and memantine of experimental intracerebral hematomas in rats”, Neurol. Psychiatry 3, 219–224.

    Google Scholar 

  • Lacomblez, L., Bensimon, G., Leigh, P.N., Guillet, P., Powe, L., Durrleman, S., Delumeau, J.C., Meininger, V., Puech, A.J., Whitehead, J., Asselain, B., Cesaro, P., Larrey, D., Rossor, M., Zimmerman, H.J., Salzman, P., Doppler, V., Lloyd, C.M., Maloteaux, J.M., Delwaide, C., Laterre, E.C., Bouchard, J.P., Duquette, P., Girard, M., Masse, C., Eisen, A., Blin, O., Azulay, J.P., Billeturc, F., Pouget, J., Bouche, P., Camu, M., Carlander, B., Billiard, M., Clanet, M., Angibaud, G., Arnebes, M.C., Benazet, M., Couratier, P., Vallat, J.M., Desnuelle, C., Lagueny, A., Ellie, E., Dib, M., Rozier, A., Salachas, F., Viader, F., Delaunay, D., Dengler, R., et al. (1996) “A confirmatory doseranging study of riluzole in ALS”, Neurology 47, S242-S250.

    PubMed  CAS  Google Scholar 

  • Lee, W.T., Shen, Y.Z. and Chang, C. (2000) “Neuroprotective effect of lamotrigine and MK-801 on rat brain lesions induced by 3-nitropropionic acid: evaluation by magnetic resonance imaging and in vivo proton magnetic resonance spectroscopy”, Neuroscience 95, 89–95.

    Article  PubMed  CAS  Google Scholar 

  • Lees, K.R., Asplund, K., Carolei, A., Davis, S.M., Diener, H.C., Kaste, M., Orgogozo, J.M. and Whitehead, J. (2000) “Glycine antagonist (gavestinel) in neuroprotection (GAIN International) in patients with acute stroke: a randomised controlled trial. GAIN International Investigators”, Lancet 355, 1949–1954.

    Article  PubMed  CAS  Google Scholar 

  • Li, S., Mallory, M., Alford, M., Tanaka, S. and Masliah, E. (1997) “Glutamate transporter alterations in Alzheimer disease are possibly associated with abnormal APP expression”, J. Neuropathol. Exp. Neurol. 56, 901–911.

    Article  PubMed  CAS  Google Scholar 

  • Lipton, S.A. (1992a) “Memantine prevents HIV coat protein induced neuronal injury in vitro”, Neurology 42, 1403–1405.

    PubMed  CAS  Google Scholar 

  • Lipton, S.A. (1992b) “Models of Neuronal Injury in AIDS—another Role for the NMDA receptor”, Trends Neurosci. 15, 75–79.

    Article  PubMed  CAS  Google Scholar 

  • Lodder, J. (2000) “Neuroprotection in stroke—analysis of failure, and alternative strategies”, Neurosci. Res. Commun. 26, 173–179.

    Article  Google Scholar 

  • Mattson, M.P., Cheng, B., Davis, D., Bryant, K., Lieberburg, I. and Rydel, R.E. (1992) “beta-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity”, J. Neurosci. 12, 376–389.

    PubMed  CAS  Google Scholar 

  • Miguel-Hidalgo, J.J., Alvarez, X.A., Quack, G. and Cacabelos, R. (1998) “Protection by memantine against Aβ(1–40)-induced neurodegeneration in Ca1 subfield”, Neurobiol. Aging 19, 542.

    Google Scholar 

  • Mikawa, S., Kinouchi, H., Kamii, H., Gobbel, G.T., Chen, S.F., Carlson, E., Epstein, C.J. and Chan, P.H. (1996) “Attenuation of acute and chronic damage following traumatic brain injury in copper, zinc-superoxide dismutase transgenic mice”, J. Neurosurg. 85, 885–891.

    PubMed  CAS  Google Scholar 

  • Palmer, A.M., Marion, D.W., Botscheller, M.L., Bowen, D.M. and Dekosky, S.T. (1994) “Increased transmitter amino acid concentration in human ventricular CSF after brain trauma”, Neuroreport 6, 153–156.

    Article  PubMed  CAS  Google Scholar 

  • Parsons, C.G., Danysz, W. and Quack, G. (1998) “Glutamate in CNS disorders as a target for drug development. An update”, Drug News Perspect. 11, 523–569.

    Article  PubMed  CAS  Google Scholar 

  • Parsons, C.G., Danysz, W. and Quack, G. (1999) “Memantine is a clinically well tolerated N-methyl-d-aspartate (NMDA) receptor antagonist—a review of preclinical data”, Neuropharmacology 38, 735–767.

    Article  PubMed  CAS  Google Scholar 

  • PellegriniGiampietro, D.E., Gorter, J.A., Bennett, M.V.L. and Zukin, R.S. (1997) “The GluR2 (GluR-B) hypothesis: Ca2+-permeable AMPA receptors in neurological disorders”, Trends Neurosci. 20, 464–470.

    Article  CAS  Google Scholar 

  • Reisberg, B. (2000) “Memantine in moderately severe to severe Alzheimer’s disease (AD): results of a placebo-controlled 6-month trial”, Neurobiol. Aging 21, S275.

    Article  Google Scholar 

  • Rothman, S.M. and Olney, J.W. (1987) “Excitotoxicity and the NMDA receptor”, Trends Neurosci. 10, 299–302.

    Article  CAS  Google Scholar 

  • Rothstein, J.D., Martin, L.J. and Kuncl, R.W. (1992) “Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis”, N. Engl. J. Med. 326, 1464–1468.

    PubMed  CAS  Google Scholar 

  • Ruther, E., Glaser, A., Bleich, S., Degner, D. and Wiltfang, J. (2000) “A prospective PMS study to validate the sensitivity for change of the D-scale in advanced stages of dementia using the NMDA-antagonist memantine”, Pharmacopsychiatry 33, 103–108.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, W.J., Bubser, M. and Hauber, W. (1990) “Excitatory amino acids and Parkinson’s disease”, Trends Neurosci. 13, 46.

    Article  PubMed  CAS  Google Scholar 

  • Schulz, J.B., Matthews, R.T., Henshaw, D.R. and Beal, M.F. (1996) “Neuroprotective strategies for the treatment of lesions produced by mitochondrial toxins: implications for neuro degenerative diseases”, Neuroscience 71, 1043–1048.

    Article  PubMed  CAS  Google Scholar 

  • Schwarcz, R. and Köhler, C. (1983) “Differential vulnerability of central neurons of the rat to quinolinic acid”, Neurosci. Lett. 38, 85–90.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, P.J. and Ince, P.G. (1997) “Glutamate, excitotoxicity and amyotrophic lateral sclerosis”, J. Neurol. 244, S3-S14.

    Article  PubMed  Google Scholar 

  • Small, D.L. and Buchan, A.M. (1997) “NMDA and AMPA receptor antagonists in global and focal ischemia”, Primer Cerebrovasc. Dis., 244–247.

  • Sonsalla, P.K., Riordan, D.E. and Heikkila, R.E. (1991) “Competitive and noncompetitive antagonists at N-methyl-d-aspartate receptors protect against methamphetamine-induced dopaminergic damage in mice”, J. Pharmacol. Exp. Ther. 256, 506–512.

    PubMed  CAS  Google Scholar 

  • Srivastava, R., Brouillet, E., Beal, M.F., Storey, E. and Hyman, B.T. (1993) “Blockade of 1-methyl-4-phenylpyridinium ion (MPP+) nigral toxicity in the rat by prior decortication or MK-801 treatment—a stereological estimate of neuronal loss”, Neurobiol. Aging 14, 295–301.

    Article  PubMed  CAS  Google Scholar 

  • Takuma, H., Kwak, S., Yoshizawa, T. and Kanazawa, I. (1999) “Reduction of GluR2 RNA editing, a molecular change that increases calcium influx through AMPA receptors, selective in the spinal ventral gray of patients with amyotrophic lateral sclerosis”, Ann. Neurol. 46, 806–815.

    Article  PubMed  CAS  Google Scholar 

  • Toggas, S.M., Masliah, E. and Mucke, L. (1996) “Prevention of HIV-1 gp120-induced neuronal damage in the central nervous system of transgenic mice by the NMDA receptor antagonist memantine”, Brain Res. 706, 303–307.

    Article  PubMed  CAS  Google Scholar 

  • Turski, L., Bressler, K., Rettig, K.J., Löschmann, P.A. and Wachtel, H. (1991) “Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-d-aspartate antagonists” Nature 349, 414–417.

    Article  PubMed  CAS  Google Scholar 

  • Uitti, R.J., Rajput, A.H., Ahlskog, J.E., Offord, K.P., Schroeder, D.R., Ho, M.M., Prasad, M., Rajput, A. and Basran, P. (1996) “Amantadine treatment is an independent predictor of improved survival in parkinson’s disease”, Neurology 46, 1551–1556.

    PubMed  CAS  Google Scholar 

  • Wahl, F., Renou, E., Mary, V. and Stutzmann, J.M. (1997) “Riluzole reduces brain lesions and improves neurological function in rats after a traumatic brain injury”, Brain Res. 756, 247–255.

    Article  PubMed  CAS  Google Scholar 

  • Wenk, G.L., Danysz, W. and Mobley, S.L. (1994) “Investigations of neurotoxicity and neuroprotection within the nucleus basalis of the rat”, Brain Res. 655, 7–11.

    Article  PubMed  CAS  Google Scholar 

  • Wenk, G.L., Danysz, W. and Mobley, S.L. (1995) “MK-801, memantine and amantadine show neuroprotective activity in the nucleus basalis magnocellularis”, Eur. J. Pharmac. Env. Tox. Pharmacol. 293, 267–270.

    Article  CAS  Google Scholar 

  • Wenk, G.L., Danysz, W. and Roice, D.D. (1996) “The effects of mitochondrial failure upon cholinergic toxicity in the nucleus basalis”, Neuroreport 7, 1453–1456.

    Article  PubMed  CAS  Google Scholar 

  • Wenk, G.L., Hauss-Wegrzyniak, B. and Baker, L.M. (1998) “Potential therapies for a novel animal model of Alzheimer’s disease—Chronic neuroinflamation of transgenic rats that overexpress human β-amyloid”, Neurobiol. Aging 19, S129.

    Google Scholar 

  • Wrathall, J.R., Teng, Y.D., Choiniere, D. and Mundt, D.J. (1992) “Evidence that local non-NMDA receptors contribute to functional deficits in contusive spinal cord injury”, Brain Res. 586, 140–143.

    Article  PubMed  CAS  Google Scholar 

  • Wrathall, J.R., Teng, Y.D. and Choiniere, D. (1996) “Amelioration of functional deficits from spinal cord trauma with systemically administered NBQX, an antagonist of non-N-methyl-d-aspartate receptors”, Exp. Neurol. 137, 119–126.

    Article  PubMed  CAS  Google Scholar 

  • Wrathall, J.R., Teng, Y.D. and Marriott, R. (1997) “Delayed antagonism of AMPA/kainate receptors reduces long-term functional deficits resulting from spinal cord trauma”, Exp. Neurol. 145, 565–573.

    Article  PubMed  CAS  Google Scholar 

  • Wu, J.Q., Anwyl, R. and Rowan, M.J. (1995) “Beta-amyloid selectively augments NMDA receptor-mediated synaptic transmission in rat hippocampus”, Neuroreport 6, 2409–2413.

    PubMed  CAS  Google Scholar 

  • Zauner, A. and Bullock, R. (1995) “The role of excitatory amino acids in severe brain trauma: opportunities for therapy: a review”, J. Neurotrauma 12, 547–554.

    Article  PubMed  CAS  Google Scholar 

  • Zuddas, A., Oberto, G., Vaglini, F., Fascetti, F., Fornai, F. and Corsini, G.U. (1992) “MK-801 prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in primates”, J. Neurochem. 59, 733–739

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Danysz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danysz, W., Parsons, C.G. Neuroprotective potential of ionotropic glutamate receptor antagonists. neurotox res 4, 119–126 (2002). https://doi.org/10.1080/10298420290015872

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/10298420290015872

Keywords

Navigation