Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-30T21:20:52.627Z Has data issue: false hasContentIssue false

Compatibility of entomopathogenic nematodes with fipronil

Published online by Cambridge University Press:  12 April 2024

F. García del Pino*
Affiliation:
Departamento de Biología Animal, Vegetal y Ecología, Facultad de Ciencias, Universidad Autónoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
M. Jové
Affiliation:
Departamento de Biología Animal, Vegetal y Ecología, Facultad de Ciencias, Universidad Autónoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
*
*Fax: 93 581 13 21 Email: Fernando.Garcia@uab.es

Abstract

The survival and infectivity of infective juveniles (IJs) of three species of entomopathogenic nematodes, Steinernema carpocapsae Weiser, S. arenarium (Artyukhovsky) (Rhabditida: Steinernematidae) and Heterorhabditis bacteriophora Poinar (Rhabditida: Heterorhabditidae), were determined after exposure to different concentrations (250, 500, 1000 and 2000 ppm) of fipronil, an insecticide acting on the GABA receptors to block the chloride channel. Heterorhabditis bacteriophora was very tolerant to all concentrations of fipronil, with the highest mortality of 17% being observed at 2000 ppm of fipronil after 72 h exposure. Steinernema carpocapsae showed a similar response, with the highest mortality of 11.25% of IJs being observed after 72 h exposure to 2000 ppm of fipronil. Steinernema arenarium was, however, more sensitive to fipronil, and at 2000 ppm mortality rates of 94.6% and 100% were observed after 24 and 72 h, respectively. Fipronil had negligible effects on the infectivity of the three nematode species tested. The IJs which survive exposure to all concentrations of fipronil tested can infect and reproduce in Galleria larvae. The moderate effects on entomopathogenic nematodes of a lower fipronil concentration (250 ppm) and the field rates (12–60 ppm) of fipronil used as insecticide, suggest that direct mixing of entomopathogenic nematodes and fipronil at field rates is a viable integrated pest management option.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbot, W.S. (1925) A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18, 265267.CrossRefGoogle Scholar
Alumai, A. & Grewal, P.S. (2004) Tank-mix compatibility of the entomopathogenic nematodes, Heterorhabditis bacteriophora and Steinernema carpocapsae, with selected chemical pesticides used in turfgrass. Biocontrol Science and Technology 14, 725730.CrossRefGoogle Scholar
Bednarek, A., Popowska-Nowak, E., Pezowicz, E. & Kamionek, M. (2004) Integrated methods in pest control: effect of insecticides on entomopathogenic fungi (Beauveria bassiana (Bals) Vuill., B. brongniartii (Sacc.)) and nematodes (Heterorhabditis megidis Poinar, Jackson, Klein, Steinernema feltiae Filipjev, S. glaseri Steiner). Polish Journal of Ecology 52, 223228.Google Scholar
Buntain, I.G., Hatton, L.R., Hawkins, D.W., Pearson, C.J. & Roberts, D.A. (1988) Derivatives of N-phenylpyrazoles. European Patent 295117 A1. 40 pp.Google Scholar
Cole, L.M., Nicholson, R.A. & Casida, J.E. (1993) Action of phenylpyrazole insecticides at the GABA-gated chloride channel. Pesticide Biochemistry and Physiology 46, 4754.CrossRefGoogle Scholar
Colliot, F., Kukorowski, K.A., Hawkins, D.W. & Roberts, D.A. (1992) Fipronil: a new soil and foliar broad spectrum insecticide. pp. 2934 in Brighton Crop Protection Conference-Pests and Diseases, Vol. 1. British Crop Protection Council, Farnham, UK.Google Scholar
Fedorko, A., Kamionek, M., Kozlowska, J. & Mianowska, E. (1977 a) The effects of some insecticides on nematodes of different ecological groups. Polish Ecological Studies 3, 779788.Google Scholar
Fedorko, A., Kamionek, M., Kozlowska, J. & Mianowska, E. (1977 b) The effects of vydate-oxamyl on nematodes of different ecological groups. Polish Ecological Studies 3, 8993.Google Scholar
Gaugler, R. & Campbell, J.F. (1991) Behavioural response of the entomopathogenic nematodes Steinernema carpocapsae and Heterorhabditis bacteriophora to oxamyl. Annals of Applied Biology 119, 131138.CrossRefGoogle Scholar
Hainzl, D. & Casida, J.E. (1996) Fipronil insecticide: novel photochemical desulfinylation with retention of neurotoxicity. Proceedings of the National Academy of Sciences, USA 93, 1276412767.CrossRefGoogle ScholarPubMed
Hainzl, D., Cole, L.M. & Casida, J.E. (1998) Role of the sulfone metabolite in fipronil toxicology. 215th ACS National Meeting, March 29 to April 2, 1998, Dallas, Texas, abstract 64 AGRO.Google Scholar
Hara, A.H. & Kaya, K. (1982) Effects of selected insecticides and nematicides on the in vivo development of the entomogenous nematode Neoaplectana carpocapsae . Journal of Nematology 14, 486491.Google Scholar
Hara, A.H. & Kaya, K. (1983 a) Toxicity of selected organophospate and carbamate pesticides to infected juveniles of the entomogenous nematode Neoaplectana carpocapsae (Rhabditida: Steinernematidae). Environmental Entomology 12, 496501.CrossRefGoogle Scholar
Hara, A.H. & Kaya, K. (1983 b) Development of the entomogenous nematodes, Neoaplectana carpocapsae (Rhabditida: Steinernematidae), in insecticide-killed beet armyworm (Lepidoptera: Noctuidae). Journal of Economic Entomology 76, 423426.CrossRefGoogle Scholar
Head, J., Walters, K.F.A. & Langton, S. (2000) The compatibility of the entomopathogenic nematode, Steinernema feltiae, and chemical insecticides for the control of the South American leafminer, Liriomyza huidobrensis . BioControl 45, 345353.CrossRefGoogle Scholar
Heungens, A. & Buysse, G. (1987) Toxicity of several pesticides in water solution on Heterorhabditis nematodes. Mededelingen Faculteit Landbouwwetenschappen Rijksuniversiteit Gent 52, 631638.Google Scholar
Hussaini, S.S., Singh, S.P. & Shakeela, V. (2001) Compatibility of entomopathogenic nematodes (Steinernematidae, Heterorhabditidae: Rhabditida) with selected pesticides and their influence on some biological traits. Entomon 26, 3744.Google Scholar
Ishibashi, N. & Takii, S. (1993) Effects of insecticides on movement, nictation, and infectivity of Steinernema carpocapsae . Journal of Nematology 25, 204213.Google ScholarPubMed
Kaya, H.K. & Burlando, T.M. (1989) Infectivity of Steinernema feltiae in fenamiphos-treated sand. Journal of Nematology 21, 434436.Google ScholarPubMed
McIntire, S.L., Jorgensen, E., Kaplan, J. & Horvitz, H.R. (1993) The GABAergic nervous system of Caenorhabditis elegans . Nature 364, 337341.CrossRefGoogle ScholarPubMed
Opperman, C.H. & Chang, S. (1990) Plant-parasitic nematode acetylcholinesterase inhibition by carbamate and organophosphate nematicides. Journal of Nematology 22, 481488.Google ScholarPubMed
Palomo Soriano, A. & García del Pino, F. (2000) Compatibilidad de los nematodos entomopatógenos (Rhabditida: Steinernematidae y Heterorhabditidae) con el Oxamilo. Boletín Sanidad Vegetal Plagas 26, 377387.Google Scholar
Patel, M.N. & Wright, D.J. (1996) The influence of neuroactive pesticides on the behaviour of entomopathogenic nematodes. Journal of Helminthology 70, 5361.CrossRefGoogle Scholar
Prakasa Rao, S.P., Das, P.K. & Padhi, G. (1975) Note of compatibility of DD136 (Neoaplectana carpocapsae) Dutky, an insect parasitic nematode with some insecticides and fertilizers. Indian Journal of Agricultural Sciences 45, 275277.Google Scholar
Rovesti, L. & Deseö, K.V. (1990) Compatibility of chemical pesticides with the entomopathogenic nematodes, Steinernema carpocapsae Weiser and S. feltiae Filipjev (Nematoda: Steinernematidae). Nematologica 36, 237245.CrossRefGoogle Scholar
Rovesti, L., Heinzpeter, E.W., Tagliente, F. & Deseö, K.V. (1988) Compatibility of pesticides with the entomopathogenic nematode Heterorhabditis bacteriophora Poinar (Nematoda: Heterorhabditidae). Nematologica 34, 462476.Google Scholar
Tomlin, C.D.S. (Ed.) (1997) The pesticide manual. 11th edn. pp. 545547. British Crop Protection Council, Farnham, UK.Google Scholar
Woodring, J.L. & Kaya, H.K. (1998) Steinernematid and heterorhabditid nematodes, a handbook of techniques. Southern Cooperative Series Bulletin 331, 130.Google Scholar
Wright, D.J. (1981) Nematicides: mode of action and new approaches to chemical control. pp. 421449 in Zuckerman, B.M. & Rohde, R.A. (Eds) Plant parasitic nematodes. Vol. 3. New York, Academic Press, Inc.CrossRefGoogle Scholar
Zhang, L., Shono, T., Yamanaka, S. & Tanabe, H. (1994) Effects of insecticides on the entomopathogenic nematode Steinernema carpocapsae Weiser. Applied Entomology and Zoology 29, 539547.CrossRefGoogle Scholar
Zimmerman, R.J. & Cranshaw, W.S. (1990) Compatibility of three entomogenous nematodes (Rhabditida) in aqueous solutions of pesticides used in turfgrass maintenance. Journal of Economic Entomology 83, 97100.CrossRefGoogle Scholar