Skip to main content
Log in

Positive selectable marker genes for routine plant transformation

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Plant genetic transformation technologies rely upon the selection and recovery of transformed cells. Selectable marker genes used so far have been either antibiotic resistance genes or herbicide tolerance genes. There is a need to apply alternative principles of selection, as more transgenic traits have to be incorporated into a transgenic crop and because of concern that the use of conventional marker genes may pose a threat to humans and the environment. New classes of marker genes are now available, conferring metabolic advantage of the transgenic cells over the non-transformed cells. The new selection systems, as described in this review, are being used with success and superior performance over the traditional marker systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ACNFP Report on the use of antibiotic resistance markers in genetically modified food organisms. London: Advisory Committee on Novel Foods and Processes, Department of Health and Ministry of Agriculture, Fisheries and Food; 1994.

    Google Scholar 

  • Bowen, B. A. Markers for plant gene transfer. In: Kung, S. D., Wu, R., eds. Transgenic plants. vol. 11 San Diego: Academic Press; 1993:89–123.

    Google Scholar 

  • Flavell, R. B.; Dart, E.; Fuchs, R. L.; Fraley, R. T. Selectable marker genes: safe for plants? Bio/Technology 10:141–146; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Fraley, R. T.; Rogers, S. G.; Horsch, R. B.; Sanders, P. R.; Fick, J. S.; Adams, S. P.; Bittners, M. L.; Brand, L. A.; Fink, C. L.; Fry, Y. S.; Galluppi, G. R.; Coldberg, S. B.; Hoffmann, N. L.; Woo, S. C.: Expression of bacterial genes in plant cells. Proc. Natl Acad. Sci. USA 80:4803–4807; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs, R. L.; Ream, J. E.; Cammond, B. G.; Naylor, M. W.; Leimgruber, R. M.; Berberich, S. A. Safety assessment of the neomycin phosphotransferase II (NPTH) protein. Bio/Technology 11:1543–1547; 1992.

    Article  Google Scholar 

  • Haldrup, A.; Noerremark, M.; Okkels, F. T. Plant selection principle based on xylose isomerase. In Vitro Cell. Dev. Biol. Plant 37:114–119; 2001.

    Article  CAS  Google Scholar 

  • Haldrup, A.; Petersen, S. G.; Okkels, F. T. Positive selection: a plant selection principle based on xylose isomerase, an enzyme used in food industry. Plant Cell Rep. 18:76–81; 1998a.

    Article  CAS  Google Scholar 

  • Haldrup, A.; Petersen, S. G.; Okkels, F. T. The xylose isomerase gene from Thermoanaerobacterium thermosulfurogenes allows effective selection of transgenic plant cells using D-xylose as the selection agent. Plant Mol. Biol. 37:287–296; 1998b.

    Article  PubMed  CAS  Google Scholar 

  • Joersbo, M.; Donaldson, I.; Kreiberg, J.; Petersen, S. G.; Brunstedt, J.; Okkels, F. T. Analysis of mannose selection used for transformation of sugar beet. Mol. Breed. 4:111–117; 1998.

    Article  CAS  Google Scholar 

  • Joersbo, M.; Okkels, F. T. A novel principle for the selection of transgenic plant cells: positive selection. Plant Cell Rep. 16:219–221; 1996.

    Article  CAS  Google Scholar 

  • Joersbo, M.; Petersen, S. G.; Okkels, F. T. Parameters interacting with mannose selection employed for the production of transgenic sugar beet. Physiol. Plant. 105:109–115; 1999.

    Article  CAS  Google Scholar 

  • Kramer, C.; DiMaio, J.; Carswell, G. K.; Shillito, R. D. Selection of transformed protoplast-derived Zea mays colonies with phosphinothricin and a novel assay using the pH indicator chlorophenol red. Planta 190:454–458; 1993.

    Article  CAS  Google Scholar 

  • Kristo, P.; Saarelainen, R.; Fagerström, R.; Aho, S.; Korhola, M. Protein purification, and cloning and characterization of the cDNA and gene for xylose isomerase of barley. Eur. J. Biochem. 237:240–246; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Lee, C.; Bagdasarian, M.; Meng, M.; Zeikus, J. O. Catalytic mechanism of xylose (glucose) isomerase from Clostridium thermosulfurogenes: characterization of the structural gene and function of active site histidine. J. Biol. Chem. 265:19082–19090; 1990.

    PubMed  CAS  Google Scholar 

  • Lucca, P.; Ye, X.; Potrykus, I. Effective selection and regeneration of transgenic rice plants with mannose as selective agent. Mol. Breed. 7:43–49; 2001.

    Article  CAS  Google Scholar 

  • Malca, I.; Endo, R. M.; Long, M. R. Mechanism of glucose counteraction of inhibition of root elongation by galactose, mannose and glucosamine. Phytopathology 57:272–278; 1967.

    CAS  Google Scholar 

  • Miles, J. S.; Guest, J. R. Nucleotide sequence and transcriptional start point of the phosphomannose isomerase gene (manA) of Escherichia coli. Gene 32:41–48; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Negrotto, D.; Jolley, M.; Beer, S.; Wenck, A. R.; Hansen, G. The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Rep. 19:798–803; 2000.

    Article  CAS  Google Scholar 

  • Okkels, F. T.; Ward, J. L.; Joersbo, M. Synthesis of cytokinin glucuronides for the selection of transgenic plant cells. Phytochemistry 46:801–804; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Puchta, H. Removing selectable marker genes: taking the short cut. Trends Plant Sci. 5:273–274; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Reed, J. N.; Chang, Y.-F.; McNamara, D. D.; Beer, S.; Miles, P. J. High frequency transformation of wheat with the selectable marker mannose-6-phosphate isomerase (PMI). In Vitro Cell. Dev. Biol. 35:57A; 1999.

    Article  Google Scholar 

  • Reed, J.; Privalle, L.; Powell, L.; Meghji, M.; Dawson, J.; Dunder, E.; Suttie, J.; Wenck, A.; Launis, K.; Kramer, C.; Chang, Y.-F.; Hansen, G.; Wright, M. Phosphomannose isomerase: an efficient selectable marker for plant transformation. In Vitro Cell. Dev. Biol. Plant 37:127–132; 2001.

    CAS  Google Scholar 

  • Stein, J.C.; Hansen, G. Mannose induces an endonuclease responsible for DNA laddering in plant cells. Plant Physiol. 121:1–9; 1999.

    Article  Google Scholar 

  • Wang, A. S.; Evans, R. A.; Altendorf, P. R.; Hanten, J. A.; Doyle, M. C.; Rosichan, J. L. A mannose selection system for production of fertile transgenic maize plants from protoplasts. Plant Cell Rep. 19:654–660; 2000.

    Article  CAS  Google Scholar 

  • Wilmink, A.; Dons, J. J. M. Selective agents and marker genes for use in transformation of monocotyledonous plants. Plant Mol. Biol. Rep. 11:165–185; 1993.

    CAS  Google Scholar 

  • Wong, H. C.; Ting, Y.; Lin, H.-C.; Reichert, F.; Myambo, K.; Watt, K.; Toy, P. L.; Drummond, R. J. Genetic organization and regulation of the xylose degradation genes in Streptomyces rubiginosus. J. Bacteriol. 173:6849–6858; 1991.

    PubMed  CAS  Google Scholar 

  • Wright, M.; Dawson, J.; Dunder, E.; Suttie, J.; Reed, J.; Kramer, C.; Chang, Y.; Novitzky, R.; Wang, H.; Artim-Moore, L. Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant Cell Rep. 20:429–436; 2001.

    Article  CAS  Google Scholar 

  • Zhang, P.; Potrykus, I.; Puonti-Kaerlas, J. Efficient production of transgenic cassava using negative and positive selection. Transgenic Res. 9:405–415; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, P.; Puonti-Kaerlas, J. PIG-mediated cassava transformation using positive and negative selection. Plant Cell Rep. 19:1041–1048; 2000.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Sági.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penna, S., Sági, L. & Swennen, R. Positive selectable marker genes for routine plant transformation. In Vitro Cell.Dev.Biol.-Plant 38, 125–128 (2002). https://doi.org/10.1079/IVP2001272

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2001272

Key words

Navigation