Skip to main content
Log in

Recent advances in genetic transformation of forage and turf grasses

  • Invited Review
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Forage and turf grasses are critical to sustainable agriculture and contribute extensively to the world economy. Tremendous progress has been made in genetic transformation of forage and turf grasses in the past decade. The rapid advancement of cellular and molecular biology and transgenic technology provides novel methods to accelerate and complement conventional breeding efforts. This review summarizes the latest developments in genetic transformation methods and the applications of molecular techniques for the improvement of forage and turf grasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abebe, T.; Guenzi, A. C.; Martin, B.; Cushman, J. C. Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol. 131:1748–1755; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Abelson, P. H. A potential phosphate crisis. Science 283:2015; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Aguado-Santacruz, G. A.; Rascon-Cruz, Q.; Cabrera-Ponce, J. L.; Martinez-Hernandez, A.; Olalde-Portugal, V.; Herrera-Estrella, L. Transgenic plants of blue grama grass, Bouteloua gracilis (H.B.K.) Lag. ex Steud., from microprojectile bombardment of highly chlorophyllous embryogenic cells. Theor. Appl. Genet. 104:763–771; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Aldemita, R. R.; Hodges, T. K. Agrobacterium tumefaciens-mediated transformation of japonica and indica rice varieties. Plant 199:612–617; 1996.

    Article  CAS  Google Scholar 

  • Altpeter, F.; Fang, Y. D.; Xu, J. P.; Ma, X. R. Comparison of transgene expression stability after Agrobacterium-mediated or biolists gene transfer into perennial ryegrass (Lolium perenne L.). In: Hopkins, A.; Wang, Z. Y.; Mian, R.; Sledge, M.; Barker, R. E., eds. Molecular breeding of forage and turf. Dordrecht: Kluwer Academic Publishers; 2004:255–260.

    Chapter  Google Scholar 

  • Altpeter, F.; Xu, J. P. Rapid production of transgenic turfgrass (Festuca rubra L.) plants. J. Plant Physiol. 157:441–448; 2000.

    CAS  Google Scholar 

  • Altpeter, F.; Xu, J. P.; Ahmed, S. Generation of large numbers of independently transformed fertile perennial ryegrass (Lolium perenne L.) plants of forage- and turf-type cultivars. Mol. Breed. 6:519–528; 2000.

    Article  CAS  Google Scholar 

  • Apse, M. P.; Aharon, G. S.; Snedden, W. A.; Blumwald, E. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Asano, Y.; Ito, Y.; Fukami, M.; Sugiura, K.; Fujiie, A. Herbicide-resistant transgenic creeping bentgrass plants obtained by electroporation using an altered buffer. Plant Cell Rep. 17:963–967; 1998.

    Article  CAS  Google Scholar 

  • Asano, Y.; Otsuki, Y.; Ugaki, M. Electroporation-mediated and silicon carbide fiber-mediated DNA delivery in Agrostis alba L. (Redtop). Plant Sci. 79:247–252; 1991.

    Article  CAS  Google Scholar 

  • Asano, Y.; Ugaki, M. Transgenic plants of Agrostis alba obtained by electroporation-mediated direct gene transfer into protoplasts. Plant Cell Rep. 13:243–246; 1994.

    Article  CAS  Google Scholar 

  • Bajaj, S.; Ran, Y.; Phillips, J.; Kulrajathevan, G.; Pal, S.; Cohen, D.; Elborough, K.; Puthigae, S. A high throughput Agrobacterium tumefaciens-mediated transformation method for functional genomics of perennial ryegrass (Lolium perenne L.). Plant Cell Rep. (in press); 2006.

  • Bate, N. J.; Orr, J.; Ni, W.; Meromi, A.; Nadler-Hassar, T.; Doerner, P. W.; Dixon, R. A.; Lamb, C. J.; Elkind, Y. Quantitative relationship between phenylalanine ammonia-lyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate-determining step in natural product synthesis. Proc. Natl Acad. Sci. USA 91:7608–7612; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Baucher, M.; Monties, B.; Van Montagu, M.; Boerjan, W. Biosynthesis and genetic engineering of lignin. Crit. Rev. Plant Sci. 17:125–197; 1998.

    Article  CAS  Google Scholar 

  • Belanger, F. C.; Meagher, T. R.; Day, P. R.; Plumley, K.; Meyer, W. A. Interspecific hybridization between Agrostis stolonifera and related Agrostis species under field conditions. Crop Sci. 43:240–246; 2003.

    Article  Google Scholar 

  • Bernard-Vailhe, M. A.; Migne, C.; Cornu, A.; Maillot, M. P.; Crenet, E.; Besle, J. M.; Atanassova, R.; Martz, F.; Legrand, M. Effect of modification of the O-methyltransferase activity on cell wall composition, ultrastructure and degradability of transgenic tobacco. J. Sci. Food Agric. 72:385–391; 1996.

    Article  CAS  Google Scholar 

  • Bettany, A. J. E.; Dalton, S. J.; Timms, E.; Manderyck, B.; Dhanoa, M. S.; Morris, P. Agrobacterium tumefaciens-mediated transformation Festuca arundinacea (Schreb.) and Lolium multiflorum (Lam.). Plant Cell Rep. 21:437–444; 2003.

    PubMed  CAS  Google Scholar 

  • Bhalla, P. L.; Swoboda, I.; Singh, M. B.; Antissense-mediated silencing of a gene encoding a major ryegrass pollen allergen. Proc. Natl Acad. Sci. USA 96:11676–11680; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Bieber, T. Fe RI on antigen-presenting cells. Curr. Opin. Immunol. 8:773–777; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Boudet, A. M.; Kajita, S.; Grima-Pettenati, J.; Goffner, D.. Lignins and lignocellulosics: a better control of synthesis for new and improved uses. Trends Plant Sci. 8:576–581; 2003

    Article  PubMed  CAS  Google Scholar 

  • Bradford, K. J.; Van Deynze, A.; Gutterson, N.; Parrott, W.; Strauss, S. H. Regulating transgenic crops sensibly: lessons from plant breeding, biotechnology and genomics. Nat. Biotechnol. 23:439–444; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Brinch-Pedersen, H.; Sorensen, L. D.; Holm, P. B. Engineering crop plants: getting a handle on phosphate. Trends Plant Sci. 7:118–125; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Britton, M. P. Turfgrass diseases. In: Hanson, A. A.; Juska, F. V., eds. Turfgrass science. Madison, WI: American Society of Agronomy; 1969;288–335.

    Google Scholar 

  • Buxton, D. R.; Redfearn, D. D. Plant limitations to fiber digestion and utilization. J. Nutr. 127:814S-818S; 1997.

    PubMed  CAS  Google Scholar 

  • Buxton, D. R.; Russell, J. R. Lignin constituents and cell-wall digestibility of grass and legume stems. Crop Sci. 28:553–558; 1988.

    Article  CAS  Google Scholar 

  • Casler, M. D.; Buxton, D. R.; Vogel, K. P. Genetic modification of lignin concentration affects fitness of perennial herbaceous plants. Theor. Appl. Genet. 104:127–131; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Casler, M. D.; Vogel, K. P. Accomplishments and impact from breeding for increased forage nutritional value. Crop Sci. 39:12–20; 1999.

    Article  Google Scholar 

  • Chabannes, M.; Barakate, A.; Lapierre, C.; Marita, J. M.; Ralph, J.; Pean, M.; Danoun, S.; Halpin, C.; Grima Pettenati, J.; Boudet, A. M. Strong decrease in lignin content without significant alteration of plant development is induced by simultaneous down-regulation of cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) in tobacco plants. Plant J. 28:257–270; 2001a.

    Article  PubMed  CAS  Google Scholar 

  • Chabannes, M.; Ruel, K.; Yoshinaga, A.; Chabbert, B.; Jauneau, A.; Joseleau, J. P.; Boudet, A. M. In situ analysis of lignins in transgenic tobacco reveals a differential impact of individual transformations on the spatial patterns of lignin deposition at the cellular and subcellular levels. Plant J. 28:271–282; 2001b.

    Article  PubMed  CAS  Google Scholar 

  • Chai, B.; Maqbool, S. B.; Hajela, R. K.; Green, D.; Vargas, J. M. Jr., Warkentin, D.; Sabzikar, R.; Sticklen, M. B. Cloning of a chitinaselike cDNA (hs2), its transfer to creeping bentgrass (Agrostis palustris Huds.) and development of brown patch (R. solani) disease resistant transgenic lines. Plant Sci. 163:183–193; 2002.

    Article  CAS  Google Scholar 

  • Chai, M. L.; Senthil, K. K.; Kim, D. H. Transgenic plants of colonial bentgrass from embryogenic callus via Agrobacterium-mediated transformation. Plant Cell Tiss. Organ Cult. 77:165–171; 2004.

    Article  CAS  Google Scholar 

  • Chakravarthy, S.; Tuori, R. P.; D'Ascenzo, M. D.; Fobert, P. R.; Despres, C.; Martin, G. B. The tomato transcription factor Pti4 regulates defenserelated gene expression via GCC box and non-GCC box cis elements. Plant Cell. 15:3033–3050; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Chatterton, N. J.; Thornley, W. R.; Harrison, P. A.; Bennett, J. H. DP-3 and DP-4 oligosaccharides in temperate and tropical grass foliage grown under cool temperatures. Plant Physiol. Biochem. 29:367–372; 1991.

    CAS  Google Scholar 

  • Chen, L.; Auh, C.; Chen, F.; Cheng, X. F.; Aljoe, H.; Dixon, R. A.; Wang, Z.-Y. Lignin deposition and associated changes in anatomy, enzyme activity, gene expression and ruminal degradability in stems of tall fescue at different developmental stages. J. Agric. Food Chem. 50:5558–5565; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Chen, L.; Auh, C.; Dowling, P.; Bell, J.; Chen, F.; Hopkins, A.; Dixon, R. A.; Wang, Z.-Y. Improved forage digestibility of tall fescue (Festuca arundinacea) by transgenic down-regulation of cinnamyl alcohol dehydrogenase. Plant Biotechnol. J. 1:437–449; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Chen, L.; Auh, C.; Dowling, P.; Bell, J.; Lehmann, D.; Wang, Z.-Y. Transgenic down-regulation of caffeic acid O-methyltransferase (COMT) led to improved digestibility in tall fescue (Festuca arundinacea). Funct. Plant Biol. 31:235–245; 2004.

    Article  CAS  Google Scholar 

  • Chen, X.; Yang, W. Q.; Sivamani, E.; Bruneau, A. H.; Wang, B. H.; Qu, R. D. Selective elimination of perennial ryegrass by activation of a proherbicide through engineering E. coli argE gene. Mol. Breed. 15:339–347; 2005.

    Article  CAS  Google Scholar 

  • Cheng, M.; Hu, T. C.; Layton, J.; Liu, C. N.; Fry, J. E. Desiccation of plant tissues post-Agrobacterium infection enhances T-DNA delivery and increases stable transformation efficiency in wheat. In Vitro Cell. Dev. Biol. Plant 39:595–604; 2003.

    Article  CAS  Google Scholar 

  • Cheng, M.; Lowe, B. A.; Spencer, T. M.; Ye, X. D.; Armstrong, C. L. Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cell. Dev. Biol. Plant 40:31–45; 2004.

    Article  Google Scholar 

  • Cheng, X.-F.; Wang, Z.-Y. Overexpression of COL9, a CONSTANS-LIKE gene, delays flowering by reducing CO and FT expression in Arabidopsis thaliana. Plant J. 43:758–768; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Cho, M. J.; Choi, H. W.; Lemaux, P. G. Transformed TO orchardgrass (Dactylis glomerata L.) plants produced from highly regenerative tissues derived from mature seeds. Plant Cell Rep. 20:318–324; 2001.

    Article  CAS  Google Scholar 

  • Cho, M. J.; Ha, C. D.; Lemaux, P. G. Production of transgenic tall fescue and red fescue plants by particle bombardment of mature seed-derived highly regenerative tissues. Plant Cell Rep. 19:1084–1089; 2000.

    Article  CAS  Google Scholar 

  • Choi, H. W.; Lemaux, P. G.; Cho, M.-J. Increased chromosomal variation in transgenic versus nontransgenic barley (Hordeum vulgare L.) plants. Crop Sci. 40:524–533; 2000.

    Article  Google Scholar 

  • Christou, P. Genetic transformation of crop plants using microprojectile bombardment. Plant J. 2:275–281; 1992.

    Article  CAS  Google Scholar 

  • Copeland, L. O.; Harding, E. E. Outcrossing in ryegrasses (Lolium spp.) as determined by fluorescence tests. Crop Sci. 10:254–257; 1970.

    Article  Google Scholar 

  • Cosgrove, D. J.; Bedinger, P.; Durachko, D. M. Group I allergens of grass pollen as cell wall-loosening agents. Proc. Natl Acad. Sci. USA 94:6559–6564; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Couch, H. B. Diseases of turfgrasses. Malabar, FL: Krieger Publishing Company; 1995.

    Google Scholar 

  • Dai, S.; Zheng, P.; Marmey, P.; Zhang, S.; Tian, W.; Chen, S.; Beachy, R. N.; Fauquet, C. Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Mol. Breed. 7:25–33; 2001.

    Article  CAS  Google Scholar 

  • Dai, W. D.; Bonos, S.; Guo, Z.; Meyer, W. A.; Day, P. R.; Belanger, F. C. Expression of pokeweed antiviral proteins in creeping bentgrass. Plant Cell Rep. 21:497–502; 2003.

    PubMed  CAS  Google Scholar 

  • Dalton, S. J.; Bettany, A. J. E.; Bhat, V.; Gupta, M.G.; Bailey, K.; Timms, E. Morris, P. Genetic transformation of Dichanthium annulatum (Forssk): An apomictic tropical forage grass. Plant Cell Rep. 21:974–980; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Dalton, S. J.; Bettany, A. J. E.; Timms, E.; Morris, P. The effect of selection pressure on transformation frequency and copy number in transgenic plants of tall fescue (Festuca arundinacea Schreb.). Plant Sci. 108:63–70; 1995.

    Article  CAS  Google Scholar 

  • Dalton, S. J.; Bettany, A. J. E.; Timms, E.; Morris, P. Transgenic plants of Lolium multiforum, Lolium perenne, Festuca arundinacea and Agrostis stolonifera by silicon carbide fibre-mediated of cell suspension cultures. Plant Sci. 132:31–43; 1998.

    Article  CAS  Google Scholar 

  • Dalton, S. J.; Bettany, A. J. E.; Timms, E.; Morris, P. Co-transformed, diploid Lolium perenne (Perennial ryegrass), Lolium multiflorum (Italian ryegrass) and Lolium temulentum (Darnel) plants produced by microprojectile bombardment. Plant Cell Rep. 18:721–726; 1999.

    Article  CAS  Google Scholar 

  • Denchev, P. D.; Songstad, D. D.; McDaniel, J. K.; Conger, B. V. Transgenic orchardgrass (Dactylis glomerata) plants by direct embryogenesis from microprojectile bombarded leaf cells. Plant Cell Rep. 16:813–819; 1997.

    Article  CAS  Google Scholar 

  • Dixon, R. A.; Chen, F.; Guo, D. J.; Parvathi, K. The biosynthesis of monolignols: a ‘metabolic grid’, or independent pathways to guaiacyl and syringyl units?. Phytochemistry 57:1069–1084; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Dong, S.; Qu, R. High efficiency transformation of tall fescue with Agrobacterium tumefaciens. Plant Sci. 168:1453–1458; 2005.

    Article  CAS  Google Scholar 

  • Dubouzet, J. G.; Sakuma, Y.; Ito, Y.; Kasuga, M.; Dubouzet, E. G.; Miura, S.; Seki, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J. 33:751–763; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Ebskamp, M. J. M.; van der Meer, I. M.; Spronk, B. A.; Weisbeek P. J.; Smeekens, S. C. M. Accumulation of fructose polymers in transgenic tobacco. Bio/Technology 12:272–275; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Fei, S.; Nelson, E. Greenhouse evaluation of fitness-related reproductive traits in Roundup®-tolerant transgenic creeping bentgrass (Agrostis stolonifera L.). In Vitro Cell. Dev. Biol. Plant 40:266–273; 2004.

    Article  Google Scholar 

  • Frame, B. R.; Shou, H.; Chikwamba, R. K.; Zhang, Z.; Xiang, C.; Fonger, T. M.; Pegg, S. E. K.; Li, B.; Nettleton, D. S.; Pei, D.; Wang, K.; Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol. 129:13–22; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Freidhoff, L. R.; Ehrlich-Kautzky, E.; Grant, J. H.; Meyers, D. A.; Marsh, D. G. A study of the human immune response to Lolium perenne (rye) pollen and its components, Lol p I and Lol p II (rye I and rye II). I. Prevalence of reactivity to the allergens and correlations among skin test, IgE antibody, and IgG antibody data. J. Allergy Clin. Immunol. 1986: 1190–1201; 1986.

    Article  Google Scholar 

  • Freidhoff, L. R.; Ehrlich-Kautzky, E.; Meyers, D. A.; Marsh, D. G. A study of the human immune response to Lolium perenne (rye) pollen and its components, Lol p I and Lol p II (Rye I and Rye II). II. Longitudinal variation of antibody levels in relation to symptomatology and pollen exposure and correction of seasonally elevated antibody levels to basal values. J. Allergy Clin. Immunol. 80:646–655; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Fu, D.; Amand, P. C.; Xiao, Y.; Muthukrishnan, S.; Liang, G. H. Characterization of T-DNA integration in creeping bentgrass. Plant Sci. (in press); 2006.

  • Fu, D.; Tisserat Ned, A.; Xiao, Y.; Settleb, D.; Muthukrishnanc, S.; Liang, G. H. Overexpression of rice TLPD34 enhances dollar-spot resistance in transgenic bentgrass. Plant Sci. 168:671–680; 2005.

    Article  CAS  Google Scholar 

  • Fukuda, A.; Nakamura, A.; Tagiri, A.; Tanaka, H.; Miyao, A.; Hirochika, H.; Tanaka, Y. Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant Cell Physiol. 45:146–159; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Gardner, D. S.; Danneberger, T. K.; Nelson, E. K. Lateral spread of glyphosate-resistant transgenic creeping bentgrass (Agrostis stolonifera) lines in established turfgrass swards. Weed Technol. 18:773–778; 2004.

    Article  Google Scholar 

  • Gardner D. S.; Danneberger, T. K.; Nelson, E.; Meyer, W.; Plumley, K. Relative fitness of glyphosate-resistant creeping bentgrass lines in Kentucky bluegrass. HortScience 38:455–459; 2003.

    CAS  Google Scholar 

  • Ge, Y.; Narton, T.; Wang, Z.-Y. Transgenic zoysiagrass (Zoysia japonica) plants obtained by Agrobacterium-mediated transformation. Plant Cell Rep. (in press); 2006.

  • Gelderman, R. H.; Gerwing, J. R.; Twidwell, E. Point-injected phosphorus effects on established cool-season grass yield and phosphorus content. Agron. J. 94:48–51; 2002.

    Article  Google Scholar 

  • Giddings, G. D.; Hamilton, N. R. S.; Hayward, M. D. The release of genetically modified grasses. 1. Pollen dispersal to traps in Lolium perenne. Theor. Appl. Genet. 94:1000–1006; 1997a.

    Article  Google Scholar 

  • Giddings, G. D.; Hamilton, N. R. S.; Hayward, M. D. The release of genetically modified grasses. Part 2: The influence of wind direction on pollen dispersal. Theor. Appl. Genet. 94:1007–1014; 1997b.

    Article  Google Scholar 

  • Gilmour, S. J.; Sebolt, A. M.; Salazar, M. P.; Everard, J. D.; Thomashow, M. F. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol. 124:1854–1865; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Gocal, G. F. W.; King, R. W.; Blundell, C. A.; Schwartz, O. M.; Andersen, C. H.; Weigel, D. Evolution of floral meristem identity genes. Analysis of Lolium temulentum genes related to APETALA1 and LEAFY of Arabidopsis. Plant Physiol. 125:1788–1801; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Gocal, G. F. W.; Poole, A. T.; Gubler, F.; Watts, R. J.; Blundell, C.; King, R. W. Long-day up-regulation of a GAMYB gene during Lolium temulentum inflorescence formation. Plant Physiol. 119:1271–1278; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Goldman, J. J.; Hanna, W. W.; Fleming, G. H.; Ozias-Akins, P. Ploidy variation among herbicide-resistant bermudagrass plants of cultivar TifEagle transformed with the bar gene. Plant Cell Rep. 22:553–560; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Gondo, T.; Tsuruta, S.-I.; Akashi, R.; Kawamura, O.; Hoffmann F. Green, herbicide-resistant plants by particle inflow gun-mediated gene transfer to diploid bahiagrass (Paspalum notatum). J. Plant Physiol. 162:1367–1375; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths, D. J. The liability of seed crops of perennial ryegrass (Lolium perenne) to contamination by wind-borne pollen. J. Agric. Sci. 40:19–38; 1951.

    Article  Google Scholar 

  • Guo, D. J.; Chen, F.; Inoue, K.; Blount, J. W.; Dixon, R. A. Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa: impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell 13:73–88; 2001a.

    Article  PubMed  CAS  Google Scholar 

  • Guo, D. J.; Chen, F.; Wheeler, J.; Winder, J.; Selman, S.; Peterson, M.; Dixon, R. A. Improvement of in-rumen digestibility of alfalfa forage by genetic manipulation of lignin O-methyltransferases. Transgenic Res. 10:457–464; 2001b.

    Article  PubMed  CAS  Google Scholar 

  • Guo, Z. F.; Bonos, S.; Meyer, W. A.; Day, P. R.; Belanger, F. C. Transgenic creeping bentgrass with delayed dollar spot symptoms. Mol. Breed. 11:95–101; 2003.

    Article  CAS  Google Scholar 

  • Gutterson, N.; Reuber, T. L. Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr. Opin. Plant Biol. 7:465–471; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Ha, C. D.; Lemaux, P. G.; Cho, M. J. Stable transformation of a recalcitrant Kentucky bluegrass (Poa pratensis L.) cultivar using mature seed-derived highly regenerative tissues. In Vitro Cell. Dev. Biol. Plant 37:6–11; 2001.

    Article  CAS  Google Scholar 

  • Ha, S. B.; Wu, F. S.; Thorne, T. K. Transgenic turf-type tall fescue (Festuca arundinacea Schreb.) plants regenerated from protoplasts. Plant Cell Rep. 11:601–604; 1992.

    Article  CAS  Google Scholar 

  • Haake, V.; Cook, D.; Riechmann, J. L.; Pineda, O.; Thomashow, M. F.; Zhang, J. Z. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol. 130:639–648; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Hamelinck, C. N.; van Hooijdonk, G.; Faaij, A. P. Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28:384–410; 2005.

    Article  CAS  Google Scholar 

  • Han, N.; Chen, D.; Bian, H.-W.; Deng, M.-J.; Zhu, M.-Y. Production of transgenic creeping bentgrass Agrostis stolonifera var. palustris plants by Agrobacterium tumefaciens-mediated transformation using hygromycin selection. Plant Cell Tiss. Organ Cult. 81:131–138; 2005.

    Article  Google Scholar 

  • Hartman, C. L.; Lee, L.; Day, P. R.; Tumer, N. E. Herbicide resistant turfgrass (Agrostis palustris Huds.) by biolistic transformation. Bio/Technology 12:919–923; 1994.

    Article  CAS  Google Scholar 

  • Hauptmann, R. M.; Ozias-Akins, P.; Vasil, V.; Tabaeizadeh, Z.; Rogers, S. G.; Horsch, R. B.; Vasil, I. K.; Fraley, R. T. Transient expression of electroporated DNA in monocotyledonous and dicotyledonous species. Plant Cell Rep. 6:265–270; 1987.

    Article  CAS  Google Scholar 

  • Hayes, J. E.; Richardson, A. E.; Simpson, R. J. Phytase and acid phosphatase activities in extracts from roots of temperate pasture grass and legume seedlings. Aust. J. Plant Physiol. 26:801–809; 1999.

    CAS  Google Scholar 

  • Hensgens, L. A. M.; de Bakker, E. P. H. M.; van Os-Ruygrok, E. P.; Rueb, S.; van de Mark, F.; van der Mass, H. M.; van der Veen, S.; Kooman-Gersmann, M.; Hart, L.; Schilperoort R. A. Transient and stable expression of gusA fusions with rice genes in rice, barley and perennial ryegrass. Plant Mol. Biol. 23:643–669; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Hisano, H.; Kanazawa, A.; Kawakami, A.; Yoshida, M.; Shimamoto, Y.; Yamada, T. Transgenic perennial ryegrass plants expressing wheat fructosyltransferase genes accumulate increased amounts of fructan and acquire increased tolerance on a cellular level to freezing. Plant Sci. 167:861–868; 2004.

    Article  CAS  Google Scholar 

  • Holford, I. C. R. Soil phosphorus: its measurement, and its uptake by plants. Aust. J. Soil Res. 35:227–239; 1997.

    Article  CAS  Google Scholar 

  • Horn, M. E.; Shillito, R. D.; Conger, B. V.; Harms, C. T. Transgenic plants of orchardgrass (Dactylis glomerata L.) from protoplasts. Plant Cell Rep. 7:469–472; 1988.

    Article  CAS  Google Scholar 

  • Hu, F.; Zhang, L.; Wang, X.; Ding, J.; Wu, D. Agrobacterium-mediated transformed transgenic triploid bermudagrass (Cynodon dactylon × C. transvaalensis) plants are highly resistant to the glufosinate herbicide Liberty. Plant Cell Tiss. Organ Cult. 83:13–19; 2005a.

    Article  CAS  Google Scholar 

  • Hu, T.; Metz, S.; Chay, C.; Zhou, H. P.; Biest, N.; Chen, G.; Cheng, M.; Feng, X.; Radionenko, M.; Lu, F.; Fry, J. Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection. Plant Cell Rep. 21:1010–1019; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Hu, W. J.; Harding, S. A.; Lung, J.; Popko, J. L.; Ralph, J.; Stokke, D. D.; Tsai, C. J.; Chiang, V. L. Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat. Biotechnol. 17:808–812; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Hu, Y.; Jia, W.; Wang, J.; Zhang, Y.; Yang, L.; Lin, Z. Transgenic tall fescue containing the Agrobacterium tumefaciens ipt gene shows enhanced cold tolerance. Plant Cell Rep. 23:705–709; 2005b.

    Article  PubMed  CAS  Google Scholar 

  • Huber, M.; Hahn, R.; Hess, D. High transformation frequencies obtained from a commercial wheat (Triticum aestivum L. cultivar ‘Combi’) by microbombardment of immature embryos followed by GFP screening combined with PPT selection. Mol. Breed. 10:19–30; 2002.

    Article  CAS  Google Scholar 

  • Humphreys, J. M.; Chapple, C. Rewriting the lignin roadmap. Curr. Opin. Plant Biol. 5:224–229; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Inokuma C.; Sugiura, K.; Imaizumi, N.; Cho, C. Transgenic Japanese lawngrass (Zoysia japonica Steud.) plants regenerated from protoplasts. Plant Cell Rep. 17:334–338; 1998.

    Article  CAS  Google Scholar 

  • Jaglo-Ottosen, K. R.; Gilmour, S. J.; Zarka, D. G.; Schabenberger, O.; Thomashow, M. F. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Jauhar, P. P. Cytogenetics of the Festuca-Lolium complex: relevance to breeding. Berlin: Springer; 1993.

    Google Scholar 

  • Jensen, C. S.; Salchert, K.; Gao, C.; Andersen, C.; Didion, T.; Nielsen, K. K. Floral inhibition in red fescue (Festuca rubra L.) through expression of a heterologous flowering repressor from Lolium. Mol. Breed. 13:37–48; 2004.

    Article  CAS  Google Scholar 

  • Jensen, C. S.; Salchert, K.; Nielsen, K. K. A TERMINAL FLOMER1-like gene from perential ryegrass involved in floral transition and axillary meristem identity. Plant Physiol. 125:1517–1528; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Jofuku, K. D.; Boer, B.; Montagu, M. V.; Okamuro, J. K. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6:1211–1225; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, R. C.; Bradley, V. L.; Knowles, R. P. Genetic contamination by windborne pollen in germplasm-regeneration plots of smooth bromegrass. Plant Genet. Resour. Newslett. 106:30–34; 1996.

    Google Scholar 

  • Johnson, X.; Lidgett, A.; Chalmers, J.; Guthridge, K.; Jones, E.; Cummings N.; Spangenberg, G. Isolation and characterisation of an invertase cDNA from perennial ryegrass (Lolium perenne). J. Plant Physiol. 160:903–911; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Jouanin, L.; Goujon, T.; deNadai, V.; Martin, M. T.; Mila, I.; Vallet, C.; Pollet, B.; Yoshinaga, A.; Chabbert, B.; PetitConil, M.; Lapierre, C. Lignification in transgenic poplars with extremely reduced caffeic acid O-methyltransferase activity. Plant Physiol. 123:1363–1373; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Jung, H. J. G.; Ni, W. T. Lignification of plant cell walls: Impact of genetic manipulation. Proc. Natl Acad. Sci. USA 95:12742–12743; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Kajita, S.; Katayama, Y.; Omori, S. Alterations in the biosynthesis of lignin in transgenic plants with chimeric genes for 4-coumarate: coenzyme A ligase. Plant Cell Physiol. 37:957–965; 1996.

    PubMed  CAS  Google Scholar 

  • Kasuga, M.; Liu, Q.; Miura, S.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol. 17:287–291; 1999.

    Article  PubMed  CAS  Google Scholar 

  • King, R. W.; Evans, L. T. Gibberellins and flowering of grasses and cereals: prizing open the lid of the ‘florigen’ black box Annu. Rev. Plant Biol. 54:307–328; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Kortt, A.; Caldwell, J. B.; Lilley, G. G.; Higgins, T. J. V. Amino acid and cDNA sequences of a methionine-rich 2S protein from sunflower seed (Helianthus annuus L.). Eur. J. Biochem. 195:329–334; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Kuai, B.; Dalton, S. J.; Bettany, A. J. E.; Morris, P. Regeneration of fertile transgenic tall fescue plants with a stable highly expressed foreign gene. Plant Cell Tiss. Organ Cult. 58:149–154; 1999.

    Article  Google Scholar 

  • Kuai, B.; Morris, P. Screening for stable transformants and stability of beta-glucuronidase gene expression in suspension clutured cells of tail fescue (Festuca arundinacea). Plant Cell Rep. 15:804–808; 1996.

    Article  CAS  Google Scholar 

  • Lapierre, C.; Pollet, B.; Petit Conil, M.; Toval, G.; Romero, J.; Pilate, G.; Leple, J. C.; Boerjan, W.; Ferret, V.; Nadai, V. D.; Jouanin, L.; de Nadai, V. Structural alterations of lignins in transgenic poplars with depressed cinnamyl alcohol dehydrogenase or caffeic acid O-methyltransferase activity have an opposite impact on the efficiency of industrial kraft pulping. Plant Physiol. 119:153–163; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Lee, D.; Meyer, K.; Chapple, C.; Douglas, C. J. Antisense suppression of 4-coumarate:coenzyme A ligase activity in Arabidopsis leads to altered lignin subunit composition. Plant Cell 9:1985–1998; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Lee, L. Turfgrass biotechnology. Plant Sci. 115:1–8; 1996.

    Article  Google Scholar 

  • Lee, L.; Laramore, C. L.; Day, P. R.; Tumer, N. E. Transformation and regeneration of creeping bentgrass (Agrostis palustris Huds.) protoplasts. Crop Sci. 36:401–406; 1996.

    Article  Google Scholar 

  • Li, L.; Fei, S.; Qu, R. Agrobacterium-mediated transformation of common bermudagrass (Cynodon dactylon). Plant Cell Tiss. Organ Cult. 83:223–229; 2005.

    Article  Google Scholar 

  • Li, L.; Qu, R. Development of highly regenerable callus lines and biolistic transformation of turf-type common bermudagrass [Cynodon dactylon (L.) Pers.]. Plant Cell Rep. 22:403–407; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Li, L. C.; Cosgrove, D. J. Grass group I pollen allergens (beta-expansins) lack proteinase activity and do not cause wall loosening via proteolysis. Eur. J. Biochem. 268:4217–4226; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Li, Q.; Robson, P. R. H.; Bettany, A. J. E.; Donnison, I. S.; Thomas, H.; Scott, I. M. Modification of senescence in ryegrass transformed with IPT under the control of a monocot senescence-enhanced promoter. Plant Cell Rep. 22:816–821; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Liu, C. A.; Zhong, H.; Vargas, J.; Penner, D.; Sticklen, M. Prevention of fungal diseases in transgenic, bialaphos- and glufosinate-resistant creeping bentgrass (Agrostis palustris). Weed Sci. 46:139–146; 1998a.

    CAS  Google Scholar 

  • Liu, Q.; Kasuga, M.; Sakuma, Y.; Abe, H.; Miura, S.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406; 1998b.

    Article  PubMed  CAS  Google Scholar 

  • Lock, T. R.; Kallenbach, R. L.; Blevins, D. G.; Reinbott, T. M.; Bishop-Hurley, G. J.; Crawford, R. J.; Massie, M. D. Adequate soil phosphorus decreases the grass tetany potential of tall fescue pasture. Crop Manag. August:1–8; 2002.

    Google Scholar 

  • Lubberstedt, T. Objectives and benefit of molecular breeding in forage grasses. In: Humphreys, M. O., ed. Molecular breeding for the genetic improvement of forage crops and turf. Wageningen: Wageningen Academic Publishers; 2005:19–30.

    Google Scholar 

  • Luo, C.; Brink, D. L.; Blanch, H. W. Identification of potential fermentation inhibitors in conversion of hybrid poplar hydrolyzate to ethanol. Biomass Bioenergy 22:125–138; 2002.

    Article  CAS  Google Scholar 

  • Luo, H.; Hu, Q.; Nelson, K.; Longo, C.; Kausch, A. P.; Chandlee, J. M.; Wipff, J. K.; Fricker, C. R. Agrobacterium tumefaciens-mediated creeping bentgrass (Agrostis stolonifera L.) transformation using phosphinothricin selection results in a high frequency of single-copy transgene integration. Plant Cell Rep. 22:645–652; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Marita, J. M.; Ralph, J.; Hatfield, R. D.; Chapple, C. NMR characterization of lignins in Arabidopsis altered in the activity of ferulate 5-hydroxylase. Proc. Natl Acad. Sci. USA 96:12325–12332; 1999.

    Article  Google Scholar 

  • McNabb, W. C.; Spencer, D.; Higgins, T. J.; Barry, T. N. In vitro rates of rumen proteolysis of ribulose-1,5-bisphosphate carboxylase (Rubisco) from lucerne leaves, and of ovalbumin, vicilin and sunflower albumin 8 storage proteins. J. Sci. Food Agric. 64:53–61. 1994.

    Article  CAS  Google Scholar 

  • Miller, S. S.; Liu, J.; Allan, D. L.; Menzhuber, C. J.; Fedorova, M.; Vance, C. P. Molecular control of acid phosphatase secretion into the rhizosphere of proteoid roots from phosphorus-stressed white lupin. Plant Physiol. 127:594–606; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Mudge, S. R.; Smith, F. W.; Richardson, A. E. Root-specific and phosphate-regulated expression of phytase under the control of a phosphate transporter promoter enables Arabidopsis to grow on phytate as a sole P. source. Plant Sci. 165:871–878; 2003.

    Article  CAS  Google Scholar 

  • Ncanana, S.; Brandt, W.; Lindsey, G.; Farrant, J. Development of plant regeneration and transformation protocols for the desiccation-sensitive weeping lovegrass Eragrostis curvula. Plant Cell Rep. 24:335–340; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Ni, W.; Paiva, N. L.; Dixon, R. A. Reduced lignin in transgenic plants containing an engineered caffeic acid O-methyltransferase antisense gene. Transgenic Res. 3:120–126; 1994.

    Article  CAS  Google Scholar 

  • Nielsen, K. M. Trausgenic organism—time for conceptual diversification? Nat. Biotechnol. 21:227–228; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Novillo, F.; Alonso, J. M.; Ecker, J. R.; Salinas, J. CBF2/DREBIC is a negative regulator of CBF1/DREBIB and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc. Natl Acad. Sci. USA 101:3985–3990; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Nurminiemi, M.; Tufto, J.; Nilsson, N. O.; Rognli, O. A. Spatial models of pollen dispersal in the forage grass meadow fescue. Evol. Ecol. 12:487–502; 1998.

    Article  Google Scholar 

  • Ohta, M.; Hayashi, Y.; Nakashima, A.; Hamada, A.; Tanaka, A.; Nakamura, T.; Hayakawa, T. Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett. 532:279–282; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Okamuro, I. K.; Caster, B.; Villarroel, R.; Van Montagu, M.; Jofuku, K. D. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc. Natl Acad. Sci. USA 94:7076–7081; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Onate-Sanchez, L.; Singh, K. B. Identification of Arabidopsis ethylene-responsive element binding factors with distinct induction kinetics after pathogen infection. Plant Physiol. 128:1313–1322; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Ong, E. K.; Griffith, I. J.; Knox, R. B.; Singh, M. B. Cloning of a cDNA encoding a group-V (group-IX) allergen isoform from rye-grass pollen that demonstrates specific antigenic immunoreactivity. Gene 134:235–240; 1993.

    Article  PubMed  CAS  Google Scholar 

  • ORNL (Oak Ridge National Laboratory). Biofuels from switch-grass: greener energy pastures. ftp://bioenergy.ornl.gov/pub/pdfs/biofuels-switchgrass.pdf;1998.

  • Ørskov, E. R.; Chen, X. B. Assessment of amino acid requirement in ruminants. In: Hoshino, S.; Onodera, R.; Minato, H.; Itabashi, H., eds. The rumen ecosystem. Tokyo: Japan Scientific Societies Press and Springer-Verlag; 1990:161–167.

    Google Scholar 

  • Penmetsa, R. V.; Ha, S. B. Factors influencing transient gene expression in electroporated tall fescue protoplasts. Plant Sci. 100:171–178; 1994.

    Article  CAS  Google Scholar 

  • Perez, M.; Ishioka, G. Y.; Walker, L. E.; Chesnut, R. W. cDNA cloning and immunological characterization of the rye grass allergen Lol p I. J. Biol. Chem. 265:16210–16215; 1990.

    PubMed  CAS  Google Scholar 

  • Perez Vicente, R.; Wen, X. D.; Wang, Z. Y.; Leduc, N.; Sautter, C.; Wehrli, E.; Potrykus, I.; Spangenberg, G. Culture of vegetative and floral meristems in ryegrasses: potential targets for microballistic transformation. J. Plant Physiol. 142:610–617; 1993.

    Google Scholar 

  • Petrovska, N.; Wu, X.; Donato, R.; Wang, Z.-Y.; Ong, E.-K.; Jones, E.; Forster, J.; Emmerling, M.; Sidoli, A.; O'Hehir, R.; Spangenberg, G. Transgenic ryegrasses (Lolium spp.) with down-regulation of main pollen allergens. Mol. Breed. 14:489–501; 2004.

    Article  CAS  Google Scholar 

  • Pilate, G.; Guiney, E.; Holt, K.; PetitConil, M.; Leple, J. C.; Pollet, B.; Mila, I.; Webster, E. A.; Marstorp, H. G. Hopkins, D. W.; Jouanin, L.; Boerjan, W.; Schuch, W.; Cornu, D.; Halpin, C. Field and pulping performances of transgenic trees with altered lignification. Nat. Biotechnol. 20:607–612; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Pilon-Smits, E. A. H.; Ebskamp, M. J. M.; Paul, M. J.; Jeuken, M. J. W.; Weisbeek, P. J.; Smeekens, S. C. M. Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol. 107:125–130; 1995.

    PubMed  CAS  Google Scholar 

  • Piquemal, J.; Chamayou, S.; Nadaud, I.; Beckert, M.; Barriere, Y.; Mila, I.; Lapierre, C.; Rigau, J.; Puigdomenech, P.; Jauneau, A.; Digonnet, C.; Boudet, A. M.; Goffner, D.; Pichon, M. Down-regulation of caffeic acid O-methyltransferase in maize revisited using a transgenic approach. Plant Physiol. 130:1675–1685; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Piquemal, J.; Lapierre, C.; Myton, K.; O'Connell A.; Schuch, W.; Grima Pettenati, J.; Boudet, A. M. Down-regulation of cinnamoyl-CoA reductase induces significant changes of lignin profiles in transgenic tobacco plants. Plant J. 13:71–83; 1998.

    Article  CAS  Google Scholar 

  • Popelka, J. C.; Altpeter, F. Agrobacterium tumefaciens-mediated genetic transformation of rye (Secale cereale L.). Mol. Breed. 11:203–211; 2003.

    Article  CAS  Google Scholar 

  • Potrykus, I. Gene transfer to cereals: an assessment. Bio/Technology 8:535–542; 1990.

    Article  CAS  Google Scholar 

  • Potrykus, I. Gene transfer to plants: assessment of published approaches and results. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42:205–225; 1991.

    Article  CAS  Google Scholar 

  • Potrykus, I.; Saul, M. W.; Petruska, J.; Paszkowski, J.; Shillito, R. D. Direct gene transfer to cells of a graminaceous monocot. Mol. Gen. Genet. 199:183–188; 1985.

    Article  CAS  Google Scholar 

  • Putterill, J.; Robson, F.; Lee, K.; Simon, R.; Coupland, G. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80:847–857; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Radojevic, I.; Simpson, R. J.; St John, J. A.; Humphreys, M. O. Chemical composition and in vitro digestibility of lines of Lolium perenne selected for high concentrations of water-soluble carbohydrate. Aust. J. Agric. Res. 45:901–912; 1994.

    Article  Google Scholar 

  • Rae, A. L.; Manners, J. M.; Jones, R. J.; McIntyre, C. L.; Lu, D. Y. Antisense suppression of the lignin biosynthetic enzyme, caffeate O-methyltransferase, improves in vitro digestibility of the trophical pasture legume, Stylosanthes humilis. Aust. J. Plant Physiol. 28:289–297; 2001.

    CAS  Google Scholar 

  • Redwine, S. M.; Baird, J. H.; Sticklen, M. Mannitol accumulation in transgenic turfgrass. Abstracts ASA-CSSA-SSA Annual Meeting, 91:138; 1999.

    Google Scholar 

  • Reis, P. J.; Schinckel, P. G. Some effects of sulfur-containing amino acids on the growth and composition of wool. Aust. J. Biol. Sci. 16:218–230; 1963.

    CAS  Google Scholar 

  • Richards, H. A.; Rudas, V. A.; Sun, H.; McDaniel, J. K.; Tomaszewski, Z.; Conger, B. V. Construction of a GFP-BAR plasmid and its use for switchgrass transformation. Plant Cell Rep. 20:48–54; 2001.

    Article  CAS  Google Scholar 

  • Richardson, A. E.; Hadobas, P. A.; Hayes, J. E. Acid phosphomonoesterase and phytase activities of wheat (Triticum aestivum L.) roots and utilization of organic phosphorus substrates by seedlings grown in sterile culture. Plant Cell Environ. 23:397–405; 2000.

    Article  CAS  Google Scholar 

  • Richardson, A. E.; Hadobas, P. A.; Hayes, J. E. Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J. 25:641–649; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Riechmann, J. L.; Heard, J.; Martin, G.; Reuber, L.; Jiang, C.; Keddie, J.; Pilgrim, M.; Broun, P.; Zhang, J. Z.; Ghandehari, D.; Sherman, B. K.; Yu, G. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, G. E. Improvement of wool production through genetic engineering. Trends Biotechnol. 8:6–11; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Rognli, O. A.; Nilsson, N. O.; Nurminiemi, M. Effects of distance and pollen competition on gene flow in the wind-pollinated grass Festuca pratensis Huds. Heredity 85:550–560; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Rommens, C. M.; Humara, J. M.; Ye, J.; Yan, H.; Richael, C.; Zhang, L.; Perry, R.; Swords, K. Crop improvement through modification of the plant's own genome. Plant Physiol. 135:421–431; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Sakuma, Y.; Liu, Q.; Dubouzet, J. G.; Abe, H.; Shinozaki, K.; Yamaguchi-Shinozaki, K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression. Biochem. Biophys. Res. Commun. 290:998–1009; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Salehi, H.; Seddighi, Z.; Kravchenko, A. N.; Sticklen, M. B. Expression of the crylAc in ‘Arizona Common’ common bermudagrass via Agrobacterium-mediated transformation and control of black cutworm. J. Am. Society Hort. Sci. 130:619–623; 2005.

    CAS  Google Scholar 

  • Sallaud, C.; Meynard, D.; Boxtel, J. V.; Gay, C.; BAÒs, M.; Brizard, J. P.; Rueb, S.; Delseny, M.; Guiderdoni, E. Highly efficient production and characterization of T-DNA plants for rice (Oryza sativa L.) functional genomics. Theor. Appl. Genet. 106:1396–1408; 2003.

    PubMed  CAS  Google Scholar 

  • Samach, A.; Onouchi, H.; Gold, S. E.; Ditta, G. S.; Schwarz, S. Z.; Yanofsky, M. F.; Coupland, G. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Sato, H.; Takamizo, T. Agrobacterium tumefacines-mediated transformation of forage-type perennial ryegrass (Lolium perenne L.). Grassland Sci. (in press); 2006.

  • Sanford, J. C. The biolistic process. Trends Biotechnol. 6:299–302; 1988.

    Article  CAS  Google Scholar 

  • Saul, M. W.; Potrykus, I. Direct gene transfer to protoplasts: fate of the transferred genes. Dev. Genet. 11:176–181; 1990.

    Article  CAS  Google Scholar 

  • Schultz, E. A.; Haughn, G. W. LEAFY, a homeotic gene that regulates inflorescence development in Arabidopsis. Plant Cell 3:771–781; 1991.

    Article  PubMed  Google Scholar 

  • Sewalt, V. J. H.; Ni, W.; Blount, J. W.; Juag, H. G.; Howles, P. A.; Masoud, S. A.; Lamb, C.; Dixon, R. A. Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of phenylalanine ammonia-lyase or cinnamate 4-hydroxylase. Plant Physiol. 115:41–50; 1997a.

    PubMed  CAS  Google Scholar 

  • Sewalt, V. J. H.; Ni, W. T.; Jung, H. G.; Dixon, R. A. Lignin impact on fiber degradation: Increased enzymatic digestibility of genetically engineered tobacco (Nicotiana tabacum) stems reduced in lignin content. J. Agric. Food Chem. 45:1977–1983; 1997b.

    Article  CAS  Google Scholar 

  • Shapouri, H.; Duffield, J. A.; Wang, M. The energy balance of corn ethanol: an update. USDA Agricultural Economic Report No. 813; 2002.

  • Shinozaki, K.; Yamaguchi-Shinozaki, K.; Seki, M. Regulatory network of gene expression in the drought and cold stress responses. Curr. Opin. Plant Biol. 6:410–417; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Simpson, G. G. Evolution of flowering in response to day length: flipping the CONSTANS switch. Bioessay 25:829–832; 2003.

    Article  CAS  Google Scholar 

  • Smith, R. L.; Grando, M. F.; Li, Y. Y.; Seib, J. C.; Shatters, R. G. Transformation of bahiagrass (Paspalum notalum Flugge). Plant Cell Rep. 20:1017–1021; 2002.

    Article  CAS  Google Scholar 

  • Somleva, M. N.; Tomaszewski, Z.; Conger, B. V. Agrobacterium-mediated genetic transformation of switchgrass. Crop Sci. 42:2080–2087; 2002.

    Article  CAS  Google Scholar 

  • Spangenberg, G.; Wang, Z.-Y. Biolistic transformation of embryogenic cell suspensions. In: Celis, J. E., ed. Cell biology: a laboratory handbook, vol. 4, 2nd edn. New York, NY; Academic Press; 1998:162–168.

    Google Scholar 

  • Spangenberg, G.; Wang, Z.-Y.; Nagel, J.; Potrykus, I. Protoplast culture and generation of transgenic plants in red fescue (Festuca rubra L.). Plant Sci. 97:83–94; 1994.

    Article  CAS  Google Scholar 

  • Spangenberg, G.; Wang, Z.-Y.; Potrykus, I. Biotechnology in forage and turf grass improvement. Berlin: Springer, 1998.

    Google Scholar 

  • Spangenberg, G.; Wang, Z.-Y.; Valles, M. P.; Potrykus, I. Genetic transformation in Festuca arundinacea Schreb. (tall fescue) and Festuca pratensis Huds. (meadow fescue). In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry, vol. 34; Berlin: Springer; 1995a:183–203.

    Google Scholar 

  • Spangenberg, G.; Wang, Z.-Y.; Wu, X. L.; Nagel, J.; Iglesia, V. A.; Potrykus, I. Transgenic tall fescue (Festuca arundinacea) and red fescue (F. rubra) plants from microprojectile bombardment of embryogenic suspension cells. J. Plant Physiol. 145:693–701; 1995b.

    CAS  Google Scholar 

  • Spangenberg, G.; Wang, Z.-Y.; Wu, X. L.; Nagel, J.; Potrykus, I. Transgenic perennial ryegrass (Lolium perenne) plants from microprojectile bombardment of embryogenic suspension cells. Plant Sci. 108:209–217; 1995c.

    Article  CAS  Google Scholar 

  • Spangenberg, G.; Wang, Z.-Y.; Ye, X. D.; Wu, X. L.; Potrykus, I. Transgenic ryegrasses (Lolium ssp.). In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry; transgenic crops part I, vol. 46. Berlin: Springer; 2000:172–187.

    Google Scholar 

  • Stingl, G.; Maurer, D. IgE-mediated allergen presentation via Fc epsilon RI on antigen-presenting cells. Int. Arch. Allergy Immunol. 113:24–29; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Stockinger, E. J.; Gilmour, S. J.; Thomashow, M. F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl Acad. Sci. USA 94:1035–1040; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Suárez-López, P.; Wheatley, K.; Robson, F.; Onouchi, H.; Valverde, F.; Coupland, G. CONSTANS mediates mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410:1116–1120; 2001.

    Article  PubMed  Google Scholar 

  • Takahashi, W.; Fujimori, M.; Miura, Y.; Komatsu, T.; Nishizawa, Y.; Hibi, T., Takamizo, T. Increased resistance to crown rust disease in transgenic Italian ryegrass (Lolium multiflorum Lam.) expressing the rice chitinase gene. Plant Cell Rep. 23:811–818; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Tamborini, E.; Brandazza, A.; De, L. C.; Musco, G.; Siccardi, A. G.; Arosio, P.; Sidoli, A. Recombinant allergen Lol p II: Expression, purification and characterization. Mol. Immunol. 32:505–513; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, M. G.; Vasil, I. K. Histology of, and physical factors affecting, transient GUS expression microprojectile bombardment. Plant Cell Rep. 10:120–125; 1991.

    Article  CAS  Google Scholar 

  • Thomashow, M. F. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:571–599; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Tingay, S.; McElroy, D.; Kalla, R.; Fieg, S.; Wang, M.; Thornton, S.; Brettell, R.; Wang, M. B. Agrobacterium tumefaciens-mediated barley transformation. Plant J. 11:1369–1376; 1997.

    Article  CAS  Google Scholar 

  • Toyama, K.; Bae, C.-H.; Kang, J.-G.; Lim, Y.-P.; Adachi, T.; Rui, K.-Z.; Song, P.-S.; Lee, H.-Y. Production of herbicide-tolerant zoysiagrass by Agrobacterium-mediated transformation. Mol. Cells 16:19–27; 2003.

    PubMed  CAS  Google Scholar 

  • van der Maas, H. M.; de Jong, E. R.; Rueb, S.; Hensgens, L. A. M.; Krens, F. A. Stable transformation and long-term expression of the gusA reporter gene in callus lines of perennial ryegrass (Lolium perenne L.). Plant Mol. Biol. 24:401–405; 1994.

    Article  PubMed  Google Scholar 

  • van der Meer, I. M.; Ebskamp, M. J. M.; Visser, R. G. F.; Weisbeek, P. J.; Smeekens, S. C. M. Fructan as a new carbonhydrate sink in transgenic potato plants. Plant Cell 6:561–570; 1994.

    Article  Google Scholar 

  • van der Valk, P.; Proveniers, M. C. G.; Pertiis, J. H.; Lamers, J. T. W. H.; van Dun, C. M. P.; Smeekens, J. C. M. Late heading of perennial ryegrass caused by introducing an Arabidopsis homeobox gene. Plant Breed. 123:531–535; 2004.

    Article  Google Scholar 

  • Vance, C. P.; Uhde, S. C.; Allan, D. L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol. 157:423–447; 2003.

    Article  CAS  Google Scholar 

  • Vasil, V.; Castillo, A. M.; Fromm, M. E.; Vasil, I. K. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technology 10:667–674; 1992.

    Article  CAS  Google Scholar 

  • Vasil, V.; Hauptmann, R. M.; Morrish, F. M.; Vasil, I. K. Comparative analysis of free DNA delivery and expression into protoplasts of Panicum maximum Jacq. (Guinea grass) by electroporation and polyethylene glycol. Plant Cell Rep. 7:499–503; 1988.

    Article  CAS  Google Scholar 

  • Vijn, I.; Smeekens, S. Fructan: more than a reserve carbohydrate?. Plant Physiol. 120:351–360; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, K. P.; Jung, H. J. G. Genetic modification of herbaceous plants for feed and fuel. Crit. Rev. Plant Sci. 20:15–49; 2001.

    Article  Google Scholar 

  • Vogel, K. P.; Sleper, D. A. Alteration of plants via genetics and plants breeding. In: Fahey, G. C., Jr., ed. Forage quality, evaluation, and utilization. Madison, WI, ASA-CSSA-SSSA; 1994:891–921.

    Google Scholar 

  • Wan, Y. C.; Lemaux, P. G. Generation of large numbers of independently transformed fertile barley plants. Plant Physiol. 104:37–48; 1994.

    PubMed  CAS  Google Scholar 

  • Wang, G. R.; Binding, H.; Posselt, U. K. Fertile transgenic plants from direct gene transfer to protoplasts of Lolium perenne L. and Lolium multiflorum Lam. J. Plant Physiol. 151:83–90; 1997.

    CAS  Google Scholar 

  • Wang, Z.-Y.; Bell, J.; Ge, Y. X.; Lehmann, D. Inheritance of transgenes in transgenic tall fescue (Festuca arundinacea Schreb). In Vitro Cell. Dev. Biol. Plant 39:277–282; 2003a.

    Article  CAS  Google Scholar 

  • Wang, Z.-Y.; Bell, J.; Hopkins, A. Establishment of a plant regeneration system for wheatgrasses (Thinopyrum Agropyron and Pascopyrum). Plant Cell Tiss. Organ Cult. 73:265–273; 2003b.

    Article  CAS  Google Scholar 

  • Wang, Z.-Y.; Bell, J.; Lehmann, D. Transgenic Russian wildrye (Psathyrostachys juncea) plants obtained by biolistic transformation of embryogenic suspension cells. Plant Cell Rep. 22:903–909; 2004a.

    PubMed  CAS  Google Scholar 

  • Wang, Z.-Y.; Ge, Y. Agrobacterium-mediated high efficiency transformation of tall fescue (Festuca arundinacea Schreb.). J. Plant Physiol. 162:103–113; 2005a.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Z.-Y.; Ge, Y.; Rapid and efficient production of transgenic bermudagrass and creeping bentgrass bypassing the callus formation phase. Funct. Plant Biol. 32:769–776; 2005b.

    Article  CAS  Google Scholar 

  • Wang, Z.-Y.; Ge, Y.; Mian, R.; Baker, J. Development of highly tissue culture responsive lines of Lolium temulentum by anther culture. Plant Sci. 168:203–211; 2005.

    Article  CAS  Google Scholar 

  • Wang, Z.-Y.; Ge, Y. X.; Scott, M.; Spangenberg, G. Viability and longevity of pollen from transgenic and non-transgenic tall fescue (Fesctuca arundinacea) (Poaceae) plants. Am. J. Bot. 91:523–530; 2004b.

    Google Scholar 

  • Wang, Z.-Y.; Hopkins, A.; Lawrence, R.; Bell, J.; Scott, M. Field evaluation and risk assessment of transgenic tall fescue (Festuca arundinacea) plants. In: Hopkins, A.; Wang, Z. Y.; Mian, R.; Barker, R. E., eds. Molecular breeding of forage and turf. Dordrecht: Kluwer Academic Publishers; 2004c:367–379.

    Chapter  Google Scholar 

  • Wang, Z.-Y.; Hopkins, A.; Mian, R. Forage and turf grass biotechnology. Crit. Rev. Plant Sci. 20:573–619; 2001a.

    Article  CAS  Google Scholar 

  • Wang, Z.-Y.; Lawrence, R.; Hopkins, A.; Bell, J.; Scott, M. Pollen-mediated transgene flow in the wind-pollinated grass species tall fescue (Festuca arundinacea Schreb.). Mol. Breed. 14:47–60; 2004d.

    Article  Google Scholar 

  • Wang, Z.-Y.; Lehmann, D.; Bell, J.; Hopkins, A. Development of an efficient plant regeneration system for Russian wildrye (Psathyrostachys juncea). Plant Cell Rep. 20:797–801; 2002.

    Article  CAS  Google Scholar 

  • Wang, Z.-Y.; Scott, M.; Bell, J.; Hopkins, A.; Lehmann, D. Field performance of transgenic tall fescue (Festuca arundinacea Schreb.) plants and their progenies. Theor. Appl. Genet. 107:406–412; 2003c.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Z.-Y.; Takamizo, T.; Iglesias, V. A.; Osusky, M.; Nagel, J.; Potrykus, I.; Spangenberg, G. Transgenic plants of tall fescue (Festuca arundinacea Schreb.) obtained by direct gene transfer to protoplasts. Bio/Technology 10:691–696; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Z.-Y.; Ye, X. D.; Nagel, J.; Potrykus, I.; Spangenberg, G. Expression of a sulphur-rich sunflower albumin gene in transgenic tall fescue (Festuca arundinacea Schreb.) plants. Plant Cell Rep. 20:213–219; 2001b.

    Article  CAS  Google Scholar 

  • Wasaki, I.; Omura, M.; Ando, M.; Shinano, T.; Osaki, M.; Tadano, T. Secreting portion of acid phosphatase in roots of lupin (Lupinus albus L.) and a key signal for the secretion from the roots. Soil Sci. Plant Nutr. 45:937–945; 1999.

    CAS  Google Scholar 

  • Watrud, L. S.; Lee, E. H.; Fairbrother, A.; Burdick, C.; Reichman, J. R.; Bollman, M.; Storm, M.; King, G.; Van de Water, P. K. Evidence for landscape-level, pollen-mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPS as a marker. Proc. Natl Acad. Sci. USA 101:14533–14538; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Wei, J. Z.; Chatterton, N. J. Fructan biosynthesis and fructosyltransferase evolution: Expression of the 6-SFT (Sucrose:fructan 6-fructosyl-transferase) gene in crested wheatgrass (Agropyron cristatum). J. Plant Physiol. 158:1203–1213; 2001.

    Article  CAS  Google Scholar 

  • Wipff, J. K.; Fricker, C. Gene flow from transgenic creeping bentgrass (Agrostis stolonifera L.) in the Willamette valley, Oregon. Int. Turfgrass Soc. Res. J. 9:224–241; 2001.

    Google Scholar 

  • Wu, X. L.; Ye, X. D.; Wang, Z.-Y.; Potrykus, I.; Spangenberg, G. Gene transfer to ryegrasses: down-regulation of major pollen allergens in transgenic plants. Proceedings of XVIII International Grassland Congress, vol. 1.; 1997:35–36.

    Google Scholar 

  • Wu, Y. Y.; Chen, Q. J.; Chen, J.; Wang, X. C. Salt-tolerant transgenic perennial ryegrass (Lolium perenne L.) obtained by Agrobacterium tumefaciens-mediated transformation of the vacuolar Na+/H+ antiporter gene. Plant Sci. 169:65–73; 2005.

    Article  CAS  Google Scholar 

  • Xiao, K.; Harrison, M.; Wang, Z.-Y. Transgenic expression of a novel M. truncatula phytase gene results in improved acquisition of organic phosphorus by Arabidopsis. Planta 222:27–36; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, K.; Katagi, H.; Harrison, M.; Wang, Z.-Y. Improved phosphorus acquisition and biomass production in Arabidopsis by transgenic expression of a purple acid phosphatase gene from M. truncatula. Plant Sci. (in press); 2006.

  • Xiao, L.; Ha, S. B. Efficient selection and regeneration of creeping bentgrass transformants following particle bombardment. Plant Cell Rep. 16:874–878; 1997.

    Article  CAS  Google Scholar 

  • Xu, J. P.; Schubert, J.; Altpeter, F. Dissection of RNA-mediated ryegrass mosaic virus resistance in fertile transgenic perennial ryegrass (Lolium perenne L.). Plant J. 26:265–274; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Ye, X.; Wang, Z.-Y.; Wu, X.; Potrykus, I.; Spangenberg, G. Transgenic Italian ryegrass (Lolium multiflorum) plants from microprojectile bombardment of embryogenic suspension cells. Plant Cell Rep. 16:379–384; 1997.

    CAS  Google Scholar 

  • Ye, X. D.; Wu, X. L.; Zhao, H.; Frehner, M.; Nosberger, J.; Potrykus, I.; Spangenberg, G. Altered fructan accumulation in transgenic Lolium multiflorum plants expressing a Bacillus subtilis sacB gene. Plant Cell Rep. 20:205–212; 2001.

    Article  CAS  Google Scholar 

  • Yu, T. T.; Skinner, D. Z.; Liang, G. H.; Trick, H. N.; Huang, B.; Muthukrishnan, S. Agrobacterium-mediated transformation of creeping bentgrass using GFP as a reporter gene. Hereditas 133:229–233; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, G.; Lu, S.; Chen, T. A.; Funk, C. R.; Meyer, W. A. Transformation of triploid bermudagrass (Cynodon dactylon × C. transvaalensis cultivar TifEagle) by means of biolistic bombardment. Plant Cell Rep. 21:860–864; 2003.

    PubMed  CAS  Google Scholar 

  • Zhang, H.; Blumwald, E. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat. Biotechnol. 19:765; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J.-Y.; Broeckling, C. D.; Blancaflor, E. B.; Sledge, M.; Sumner, L. W.; Wang, Z.-Y. Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J. 42:689–707; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, Z. Y.; Cai, T. S.; Tagliani, L.; Miller, M.; Wang, N.; Pang, H.; Rudert, M.; Schroeder, S.; Hondred, D.; Seltzer, J.; Pierce, D. Agrobacterium-mediated sorghum transformation. Plant Mol. Biol. 44:789–798; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Zhong, H.; Bolyard, M. G.; Srinivasan, C.; Sticklen, M. B. Transgenic plants of turfgrass (Agrostis palustris Huds.) from microprojectile bombardent of embryogenic callus. Plant Cell Rep. 13:1–6; 1994.

    Google Scholar 

  • Zhong, R. Q.; Morrison, W. H.; Negrel, J.; Ye, Z. H. Dual methylation pathways in lignin biosynthesis. Plant Cell 10:2033–2045; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann, P.; Zardi, G.; Lehmann, M.; Amrhein, N.; Frossard, E.; Bucher, M. Engineering the root-soil interface via targeted expression of a synthetic phytase gene in tricholblasts. Plant Biotechnol. J. 1:353–360; 2003.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeng-Yu Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, ZY., Ge, Y. Recent advances in genetic transformation of forage and turf grasses. In Vitro Cell.Dev.Biol.-Plant 42, 1–18 (2006). https://doi.org/10.1079/IVP2005726

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2005726

Key words

Navigation