Skip to main content
Log in

Factors influencing Agrobacterium-mediated transformation of monocotyledonous species

  • Invited Review
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Since the success of Agrobacterium-mediated transformation of rice in the early 1990s, significant advances in Agrobacterium-mediated transformation of monocotyledonous plant species have been achieved. Transgenic plants obtained via Agrobacterium-mediated transformation have been regenerated in more than a dozen monocotyledonous species, ranging from the most important cereal crops to ornamental plant species. Efficient transformation protocols for agronomically important cereal crops such as rice, wheat, maize, barley, and sorghum have been developed and transformation for some of these species has become routine. Many factors influencing Agrobacterium-mediated transformation of monocotyledonous plants have been investigated and elucidated. These factors include plant genotype, explant type, Agrobacterium strain, and binary vector. In addition, a wide variety of inoculation and co-culture conditions have been shown to be important for the transformation of monocots. For example, antinecrotic treatments using antioxidants and bactericides, osmotic treatments, desiccation of explants before or after Agrobacterium infection, and inoculation and co-culture medium compositions have influenced the ability to recover transgenic monocols. The plant selectable markers used and the promoters driving these marker genes have also been recognized as important factors influencing stable transformation frequency. Extension of transformation protocols to elite genotypes and to more readily available explants in agronomically important crop species will be the challenge of the future. Further evaluation of genes stimulating plant cell division or T-DNA integration, and genes increasing competency of plant cells to Agrobacterium, may increase transformation efficiency in various systems. Understanding mechanisms by which treatments such as desiccation and antioxidants impact T-DNA delivery and stable transformation will facilitate development of efficient transformation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldemita, R. R.; Hodges, T. K. Agrobacterium tumefaciens-mediated transformation of japonica and indica rice varieties. Planta 199:612–617; 1996.

    Article  CAS  Google Scholar 

  • Arencibia, A. D.; Carmona, E. R. C.; Tellez, P.; Chan, M.-T.; Yu, S.-M.; Trujillo, L. E.; Oramas, P. An efficient protocol for sugarcane (Saccharum spp. L.) transformation mediated by Agrobacterium tumefaciens. Transgenic Res. 7:213–222; 1998.

    Article  CAS  Google Scholar 

  • Armstrong, C. L. The first decade of maize transformation: a review and future perspective. Maydica 44:101–109; 1999.

    Google Scholar 

  • Armstrong, C. L.; Parker, G. B.; Pershing, J. C.; Brown, S. M.; Sanders, P. R.; Duncan, D. R.; Stone, T.; Dean, D. A.; DeBoer, D. L.; Hart, J.; Howe, A. R.; Morrish, F. M.; Pajeau, W. L.; Reich, B. J.; Rodriguez, R.; Santino, C. C.; Sato, S. J.; Scluler, W.; Sims, S. R.; Stehling, S.; Tarochione, L. J.; Fromm, M. E. Field evaluation of European corn borer control in progeny of 173 transgenic corn events expressing an insecticidal protein from Bacillus thuringiensis. Crop Sci. 35:550–557; 1995.

    Article  Google Scholar 

  • Armstrong, C. L.; Rout, J. R. A novel Agrobacterium-mediated plant transformation method. Int. Patent Publ. WO01/09302 A2; 2001.

  • Azhakanandam, K.; McCabe, M. S.; Power, B.; Lowe, K. C.; Cocking, E. C.; Davey, M. B. T-DNA transfer, integration, expression and inheritance in nice: effects of plant genotype and Agrobacterium super-virulence. J. Plant Physiol. 157:429–439; 2000.

    CAS  Google Scholar 

  • Bechtold, N.; Jaudeau, B.; Jolivet, S.; Maba, B.; Vezon, D.; Voisin, R.; Pelletier, G. The maternal chromosome set is the target of the T-DNA in planta transformation of Arabidopsis thaliana. Genetics 155:1875–1887; 2000.

    PubMed  CAS  Google Scholar 

  • Bettany, A. J. E.; Dalton, S. J.; Timms, E.; Manderyck, B.; Dhanoa, M. S.; Morris, P. Agrobacterium tumefaciens-mediated transformation of Festuca arundinacea (Schreb.) and Lolium multifloram (Lam.). Plant Cell Rep. 21:437–444; 2003.

    PubMed  CAS  Google Scholar 

  • Böttinger, P.; Steinmetz, A.; Schieder, O.; Pickardt, T. Agrobacterium-mediated transformation of Vicia faba. Mol. Breed. 8:243–254; 2001.

    Article  Google Scholar 

  • Bytebier, B.; Deboeck, F.; De Greve, H.; Van Montagu, M.; Hernalsteens, J.-P. T-DNA organization in tumor cultures and transgenic plants of the monocotyledon Asparagus officinalis. Proc. Natl Acad. Sci. USA 84:5345–5349; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Chan, M. T.; Chang, H.-H.; Ho, S.-L.; Tong, W.-F.; Yu, S.-M. Agrobacterium-mediated production of transgenic rice plants expressing a chimeric α-amylase promoter/β-glucuronidase gene. Plant Mol. Biol. 22:491–506; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Chan, M.-T.; Lee, T.-M.; Chang, H.-H. Transformation of indica rice (Oryza sativa L.) mediated by Agrobacterium tumefaciens. Plant Cell Physiol. 33:577–583; 1992.

    CAS  Google Scholar 

  • Chatcau, S.; Sangwan, R. S.; Sangwan-Norreel, B. S. Competence of Arabidopsis thaliana genotypes and mutants for Agrobacterium tumefaciens-mediated gene transfer: role of phytohormones. J. Exp. Bot. 51:1961–1968; 2000.

    Article  Google Scholar 

  • Cheng, M.; Fry, J. E. An improved efficient Agrobacterium-mediated plant transformation method. Int. Patent. Publ. WO 00/34491; 2000.

    Google Scholar 

  • Cheng, M.; Fry, J. E.; Pang, S.; Zhou, H.; Hironaka, C.; Duncan, D. R.; Conner, T. W.; Wan, Y. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant. Physiol. 115:971–980; 1997.

    PubMed  CAS  Google Scholar 

  • Cheng, M.; Hu, T.; Layton, J.; Liu, C.-N.; Fry, J. E. Desiccation of plant tissues post-Agrobacterium infection enhances T-DNA delivery and increases stable transformation efficiency in wheat. In Vitro Cell. Dev. Biol. Plant 39(6):595–604; 2003.

    Article  CAS  Google Scholar 

  • Cheng, M.; Jarret, R. L.; Li, Z.; Xing, A.; Demski, J. W. Production of fertile transgenic peanut (Arachis hypogaea L.) plants using Agrobacterium tumefaciens. Plant Cell Rep. 15:653–657; 1996.

    Article  CAS  Google Scholar 

  • Cheng, X.; Sardana, R.; Kaplan, H.; Altosaar, I. Agrobacterium-transformed rice plants expressing synthetic cryIA(b) and cryIA(c) genes are highly toxie to striped stern borer and yellow stem borer. Proc. Natl Acad. Sci. USA 95:2767–2772; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Chu, C. C.; Wang, C. C.; Sun, C. S.; Hsu, C.; Yin, K. C.; Chu, C. Y.; Bi, F. Y. Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci. Sin. 18:659–668; 1975.

    Google Scholar 

  • Dale, P. J.; Marks, M. S.; Brown, M. M.; Woolston, C. J.; Gunn, H. V.; Mullineaux, P. M.; Lewis, D. M.; Kemp, J. M.; Chen, D. F.; Gilmour, D. M.; Flavell, R. B. Agroinfection of wheat: inoculation of in vitro grown seedlings and embryos. Plant. Sci. 63:237–245; 1969.

    Article  Google Scholar 

  • Datta, K.; Konkolíková-Nicola, Z.; Baisakh, N.; Oliva, N.; Datta, S. K. Agrobacterium-mediated engineering for sheath blight resistance of indica rice cultivars from different ecosystems. Theor. Appl. Genet. 100:832–839; 2000.

    Article  CAS  Google Scholar 

  • Delbreil, B.; Guerche, P.; Jullien, M. Agrobacterium-mediated transformation of Asparagus officinalis L. long-term embryogenic callus and regeneration of transgenic plants. Plant Cell Rep. 12:129–132; 1993.

    Article  CAS  Google Scholar 

  • Desfeux, C.; Clough, S. J.; Bent, A. F. Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Plant. Physiol. 123:859–904; 2000.

    Article  Google Scholar 

  • Dilleu, W.; De Clerco, J.; Kapila, J.; Zambre, M.; Van Montagu, M.; Angenon, G. The effect of temperature on Agrobacterium tumefaciens-mediated gene transfer to plants. Plant J. 12:1459–1462; 1997.

    Article  Google Scholar 

  • Dong, J.; Kharb, P.; Teng, W.; Hall, T. C. Characterization of rice transformed via an Agrobacterium-mediated inflorescence approach. Mol. Breed. 7:187–194; 2001.

    Article  CAS  Google Scholar 

  • Dong, J.; Teng, W.; Buchholz, W. G.; Hall, T. C. Agrobacterium-mediated transformation of javanica rice. Mol. Breed. 2:267–276; 1996.

    Article  CAS  Google Scholar 

  • Eady, C. C.; Weld, R. J.; Lister, C. E. Agrobacterium tumefaciens-mediated transformation and transgenic-plant regeneration of onion (Allium cepa L.). Plant Cell Rep. 19:376–381; 2000.

    Article  CAS  Google Scholar 

  • Enríquez-Obregón, G. A.; Pricto-Samsónov, D. L.; de la Riva, G. A.; Pérez, M.; Selman-Housein, G.; Vázquez-Padrón, R. I. Agrobacterium-mediated Japonica rice transformation: a procedure assisted by an antinecrotic treatment. Plant Cell Tiss. Organ Cult. 59:159–168; 1999.

    Article  Google Scholar 

  • Enríquez-Obregón, G. A.; Vázquez-Padrón, R. I.; Pricto-Samsónov, D. L.; de la Riva, G. A.; Selman-Housein, G. Herbicide-resistant sugarcane (Saccharum officinarum L.) plants by Agrobacterium-mediated transformation. Planta 206:20–27; 1998.

    Article  Google Scholar 

  • Fang, Y.-D.; Akula, C.; Altpeter, F. Agrobacterium-mediated barley (Hordeum vulgare L.) transformation using green fluorescent protein as a visual marker and sequence analysis of the T-DNA: barley genomic DNA junctions. J. Plant Physiol. 159:1131–1138; 2002.

    Article  CAS  Google Scholar 

  • Frame, B. R.; Shou, H.; Chikwamba, R. K.; Zhang, Z.; Xiang, C.; Fonger, T. M.; Pegg, S. E. K.; Li, B.; Nettleton, D. S.; Pei, D.; Wang, K. Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol. 129:13–22; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Fry, J.; Barnason, A.; Horsch, R. B. Transformation of Brassica napus with Agrobacterium tumefaciens based vectors. Plant Cell Rep. 6:321–325; 1987.

    Article  CAS  Google Scholar 

  • Ganapathi, T. R.; Higgs, N. S.; Balint-Kurti, P. J.; Arntzen, C. J.; May, G. D.; Van Eck, J. M. Agrobacterium-mediated transformation of embryogenic cell suspension of the banana cultivar Rasthali (AAB). Plant Cell Rep. 20:157–162; 2001.

    Article  CAS  Google Scholar 

  • Gasser, C. S.; Fraley, R. T. Genetically engineering plants for crop improvement. Science 244:1293–1299; 1989.

    Article  CAS  PubMed  Google Scholar 

  • Gordon-Kamm, W.; Dilkes, B. P.; Lowe, K.; Hoerster, G.; Sun, X.; Ross, M.; Church, L.; Bunde, C.; Farrell, J.; Maddock, S.; Snyder, J.; Sykes, L.; Li, Z.; Woo, Y.-M.; Bidney, D.; Larkins, B. A. Stimulation of the cell cycle and maize transformation by disruption of the plant retinoblastoma pathway. Proc. Natl Acad. Sci. USA 99:11975–11980; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Gould, J.; Devery, M.; Hasegawa, O.; Ulian, E. C.; Peterson, G.; Smith, R. H. Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot apex. Plant Physiol. 95:426–434; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Graves, A. C. F.; Goldman, S. L. Agrobacterium tumefaciens-mediated transformation of the monocot genus Gladiolus: detection of expression of T-DNA-encoded genes. J. Bacteriol. 169:1745–1746; 1987.

    PubMed  CAS  Google Scholar 

  • Grimsley, N. H.; Ramos, C.; Hein, T.; Hohn, B. Meristematic tissues of maize plants are most susceptible to Agroinfection with maize streak virus. Bio/Technology 6:185–189; 1988.

    Article  Google Scholar 

  • Guo, G.-Q.; Maiwald, F.; Lorenzen, P.; Steinbiss, H.-H. Factors influencing T-DNA transfer into wheat and barley cells by Agrobacterium tumefaciens. Cercal Res. Commun. 26:15–22; 1998.

    Google Scholar 

  • Hansen, G.; Das, A.; Chilton, M.-D. Constitutive expression of the virulence genes improves the efficiency of plant transformation by Agrobacterium. Proc. Natl Acad. Sci. USA 91:7603–7607; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Hashizume, F.; Tsuchiya, T.; Ugaki, M.; Viwa, Y.; Tachibana, N.; Kowyama, Y. Efficient Agrobacterium-mediated transformation and the usefulness of a sythetic GFP reporter gene in leading varieties of japonica rice. Plant Biotechnol. 16:397–401; 1999.

    CAS  Google Scholar 

  • Hernalsteers, J.-P.; Thia-Toong, L.; Schell, J.; Van Montagu, M. An Agrobacterium-transformed cell culture from monocot Asparagus officinalis. EMBO J. 3:3039–3041; 1984.

    Google Scholar 

  • Hiei, Y.; Komari, T.; Kubo, T. Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol. Biol. 35:205–218; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Hiei, Y.; Ohta, S.; Komari, T.; Kumashiro, T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant. J. 6:271–282; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Hooykaas-Van Slogteren, G. M. S.; Hooykaas, P. J. J.; Schilperoot, R. A. Expression of Ti plasmid genes in monocotyledonous plants infected with Agrobacterium tumefaciens. Nature 311:763–764; 1984.

    Article  CAS  Google Scholar 

  • Howe, A. R.; Gasser, C. S.; Brown, S. M.; Padgette, S. R.; Hart, J.; Parker, G. B.; Fromm, M. E.; Armstrong, C. L. Glyphosate as a selective agent for the production of fertile transgenic maize (Zea mays L.) plants. Mol. Breed. 10:153–164; 2002.

    Article  CAS  Google Scholar 

  • Hu, T.; Metz, S.; Chay, C.; Zhou, H.-P.; Biest, N.; Chen, G.; Cheng, M.; Feng, X.; Radionenko, M.; Lu, F.; Fry, J. E. Agrobacterium-mediated largescale transformation of wheat (Triticum aestivum L.). Plant Cell. Rep. 21:1010–1019; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Ishida, Y.; Saito, H.; Ohta, S.; Hiei, Y.; Komari, T.; Kumashiro, T. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnol. 14:745–750; 1996.

    Article  CAS  Google Scholar 

  • Joersbo, M.; Donaldson, I.; Kreiber, J.; Peterson, S. G.; Brunstedt, J.; Okkels, F. T. Analysis of mannose selection used for transformation of sugar beet. Mol. Breed. 4:111–117; 1998.

    Article  CAS  Google Scholar 

  • Ke, J.; Khan, R.; Johnson, T.; Somers, D. A.; Das, A. High-efficiency gene transfer to recalcitrant plants by Agrobacterium tumefaciens. Plant Cell Rep. 20:150–156; 2001.

    Article  CAS  Google Scholar 

  • Ke, X.-Y.; McCornac, A. C.; Harvey, A.; Lonsdale, D.; Chen, D.-F.; Elliott, M. C. Manipulation of discriminatory T-DNA delivery by Agrobacterium into cells of immature embryos of barley and wheat. Euphytica 126:333–343; 2002.

    Article  CAS  Google Scholar 

  • Khanna, H. K.; Daggard, G. E. Agrobacterium tumefaciens-mediated transformation of wheat using a superbinary vector and a polyamine-supplemented regeneration medium. Plant Cell Rep. 21:429–436; 2003.

    PubMed  CAS  Google Scholar 

  • Khanna, H. K.; Raina, S. K. Agrobacterium-mediated transformation of indica rice cultivars using binary and superbinary vectors. Aust. J. Plant Physiol. 26:311–324; 1999.

    Article  CAS  Google Scholar 

  • Khanna, H. K.; Raina, S. K. Elite indica transgenic rice plants expressing modified Cry IAC endotoxin of Bacillus thuringiensis show enhanced resistence to yellow stem borer (Scirpophaga incertulas). Transgenic Res. 11:411–423; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Kisaka, H.; Kameya, T. Fertile transgenic Asparagus plants produced by Agrobacterium-mediated transformation. Plant Biotechnol. 15:177–181; 1998.

    CAS  Google Scholar 

  • Kondo, T.; Hasegawa, H.; Suzuki, M. Transformation and regeneration of garlic (Allium sativum L.) by Agrobacterium-mediated gene transfer. Plant Cell Rep. 19:989–993; 2000.

    Article  CAS  Google Scholar 

  • Ku, M. S. B.; Agarie, S.; Normura, M.; Fukayama, H.; Tsuchida, H.; Ono, K.; Hirose, S.; Toki, S.; Miyao, M.; Matsuoka, M. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nature Biotechnol. 17:76–81; 1999.

    Article  CAS  Google Scholar 

  • Limanton-Grevet, A.; Jullien, M. Agrobacterium-mediated transformation of Asparagus officinalis L.: molecular and genetic analysis of transgenic plants. Mol. Breed. 7:141–150; 2001.

    Article  CAS  Google Scholar 

  • Linsmaier, E. M.; Skoog, F. Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant. 18:100–127; 1965.

    Article  CAS  Google Scholar 

  • Lucca, P.; Ye, X.; Potrykus, I. Effective selection and regeneration of transgenic rice plants with mannose as selective agent. Mol. Breed. 7:43–49; 2001.

    Article  CAS  Google Scholar 

  • Marks, M. S.; Kemp, J. M.; Woolston, C. J.; Dale, P. J. Agroinfection of wheat: a comparison of Agrobacterium strains. Plant Sci. 63:217–256; 1989.

    Article  Google Scholar 

  • Matthews, P.; Wang, M.-B.; Waterhouse, P. M.; Thornton, S.; Fieg, S. J.; Gubler, F.; Jacobsen, J. V. Marker gene elimination from transgenic barley, using co-transformation with adjacent ‘twin T-DNAs’ on a standard Agrobacterium transformation vector. Mol. Breed. 7:195–202; 2001.

    Article  CAS  Google Scholar 

  • May, G. D.; Afza, R.; Mason, H. S.; Wiecko, A.; Novak, F. J.; Arntzen, C. J. Generation of transgenic banana (Musa acuminata) plants via Agrobacterium-mediated transformation. Bio/Technology 13:486–492; 1995.

    Article  CAS  Google Scholar 

  • Messens, E.; Dekeyser, R.; Stachel, S. E. A nontransformable Triticum monoccum monocotyledonous culture produces the potent Agrobacterium vir-inducing compound ethyl ferulate. Proc. Natl Acad. Sci. USA 87:4368–4372; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Mohanty, A.; Sarma, N. P.; Tyagi, A. K. Agrobacterium-meditated high frequency transformation of an elite indica rice variety Pusa Basmati I and transmission of the transgenes to R2 progeny. Plant Sci. 147:127–137; 1999.

    Article  CAS  Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Mysore, K. S.; Nam, J.; Gelvin, S. B. An Arabidopsis histone H2A mutant is deficient in Agrobacterium T-DNA integration. Proc. Natl Acad. Sci. USA 97:948–953; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Negrotto, D.; Jolley, M.; Beer, S.; Wenck, A. R.; Hansen, G. The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Rep. 19:798–803; 2000.

    Article  CAS  Google Scholar 

  • Olhoft, P. M.; Flagel, L. E.; Donovan, C. M.; Somers, D. A. Efficient soybean transformation using hygromycin B selection in the cotyledonarynode method. Planta 216:723–735; 2003.

    PubMed  CAS  Google Scholar 

  • Olhoft, P. M.; Somers, D. A. l-Cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Rep. 20:706–711; 2001.

    Article  CAS  Google Scholar 

  • Park, S. H.; Pinson, S. R.; Smith, R. R. T-DNA integration into genomic DNA of rice following Agrobacterium inoculation of isolated shoot apices. Plant. Mol. Biol. 32:1135–1148; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Popelka, J. C.; Altpeter, F. Agrobacterum tumefaciens-mediated genetic transformation of rye (Secale cereale L.). Mol. Breed. 11:203–211; 2003.

    Article  CAS  Google Scholar 

  • Raineri, D. M.; Bottino, P.; Gordon, M. P.; Nester, E. W. Agrobacterium-mediated transformation of rice (Oryza sativa L). Bio/Technology 8:33–38; 1990.

    Article  CAS  Google Scholar 

  • Rashid, H.; Yokoi, S.; Toriyama, K.; Hinata, K. Transgenic plant production mediated by Agrobacterium in indica rice. Plant Cell Rep. 15:727–730; 1996.

    Article  CAS  Google Scholar 

  • Roberts, R. L.; Metz, M.; Monks, D. E.; Mullaney, M. L.; Hall, T.; Nester, E. W. Purine synthesis and increased Agrobacterium tumefaciens transformation of yeast and plants. Proc. Natl Acad. Sci. USA 100:6634–6639; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Rout, J. R.; Hironaka, C. M.; Conner, T. W.; DeBoer, D. L.; Duncan, D. R.; Fromm, M. E.; Armstrong, C. L. Agrobacterium-mediated stable genetic transformation of suspension cells of corn (Zea mays L.). 38th Annual Maize Geneties Conf., St. Charles, IL, March 14–17, 1996 (Abstract).

  • Russell, D. A.; Fromm, M. E. Tissue-specific expression in transgenic maize of four endosperm promoters from maize and rice. Transgenic Res. 6:157–168; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto, A.; Murato, A.; Murato, N. Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol. Biol. 38:1011–1019; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Salas, M. G.; Park, S. H.; Srivatanakul, M.; Smith, R. H. Temperature influence on stable T-DNA integration in plant cells. Plant Cell Rep. 20:701–705; 2001.

    Article  CAS  Google Scholar 

  • Sawahel, W. A.; Hassan, A. H. Generation of transgenic wheat plants producing high levels of osmoprotectant proline. Biotech. Lett. 24:7121–7125; 2002.

    Google Scholar 

  • Schäfer, W.; Görz, A.; Kahl, G. T-DNA integration and expression in a monocot crop plant after induction of Agrobacterium. Nature 327:529–532; 1987.

    Article  Google Scholar 

  • Schläppi, M.; Hohn, B. Competence of immature maize embryos for Agrobacterium-mediated gene transfer. Plant Cell 4:7–16; 1992.

    Article  PubMed  Google Scholar 

  • Shen, W.-H.; Escudero, J.; Schläppi, M.; Ramos, C.; Hohn, B.; Koukolikova-Nicola, Z. T-DNA transfer to maize cells: histochemical investigation of β-glucuronidase activity in maize tissues. Proc. Natl Acad. Sci. USA 90:1488–1492; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Simpson, G. G.; Filipowicz, W. Splicing of pre-cursors to mRNA in higher plants: mechanism, reguration and sub-nuclear organization of the spliccosomal machinery. Plant Mol. Biol. 32:1–41; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Somleva, M. N.; Tomaszewski, Z.; Conger, B. V. Agrobacterium-mediated genetic transformation of switehgrass. Crop Sci. 42:2080–2087; 2002.

    Article  CAS  Google Scholar 

  • Sunikumar, G.; Rathore, K. S. Transgenic cotton: factors influencing Agrobacterium-mediated transformation and regeneration. Mol. Breed. 8:37–52; 2001.

    Article  Google Scholar 

  • Suzuki, S.; Nakano, M. Agrobacterium-mediated production of transgenic plants of Muscari armeniacum Leichtl. Ex Bak. Plant Cell Rep. 20:835–841; 2002.

    Article  CAS  Google Scholar 

  • Suzuki, S.; Supaibulwatana, K.; Mii, M.; Nakano, M. Production of transgenic plants of Liliaceous ornamental plants Agapanthus praexcox ssp. orientalis (Leighton) Leighton via Agrobacterium-mediated transformation of embryogenic calli. Plant Sci. 161:89–97; 2001.

    Article  CAS  Google Scholar 

  • Tingay, S.; McElroy, D.; Kalla, R.; Fieg, S.; Wang, M.; Thornton, S.; Brettell, R. Agrobacterium-mediated barley transformation. Plant J. 11:1369–1376; 1997.

    Article  CAS  Google Scholar 

  • Toki, S. Rapid and efficient Agrobacterium-mediated transformation in rice. Plant Mol. Biol. Rep. 15:16–21; 1997.

    CAS  Google Scholar 

  • Trifonova, A.; Madsen, S.; Olesen, A. Agrobacterium-mediated transgene delivery and integration into barley under a range of in vitro culture conditions. Plant Sci. 161:871–880; 2001.

    Article  CAS  Google Scholar 

  • Tzfira, T.; Vaidya, M.; Citovsky, V. Increasing plant susceptibility to Agrobacterium infection by overexpression of the Arabidopsis nuclear protein VIP 1. Proc. Natl Acad. Sci. USA 99:10435–10440; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Upadhyaya, N. M.; Surin, B.; Ramm, K.; Gaudron, J.; Schünmann, P. H. D.; Taylor, W.; Waterhouse, P. M.; Wang, M.-B. Agrobacterium-mediated transformation of Australian rice cultivars Jarrah and Amaroo using modified promoters and selectable markers. Aust. J. Plant Physiol. 27:201–210; 2000.

    CAS  Google Scholar 

  • Urushibara, S.; Tozawa, Y.; Kawagishi-Kobayashi, M.; Wakasa, K. Efficient transformation of suspension-cultured rice cells mediated by Agrobacterium tumefaciens. Breed. Sci. 51:33–38; 2001.

    Article  CAS  Google Scholar 

  • Uzé, M.; Potrykus, I.; Sautter, C. Factors influencing T-DNA transfer from Agrobacterium to precultured immature wheat embryos (Triticum aestivum L.). Cereal Res. Commun. 28:17–23; 2000.

    Google Scholar 

  • Uzé, M.; Wünn, J.; Puonti-Kaerlas, J.; Potrykus, I.; Sautter, C. Plasmolysis of precultured immature embryos improves Agrobacterium mediated gene transfer to rice (Oryza sativa L.). Plant Sci. 130:87–95; 1997.

    Article  Google Scholar 

  • van der Fits, L.; Deakin, E. A.; Hoge, J. H. C.; Memelink, J. The ternary transformation system: constitutive virG on a compatible plasmid dramatically increases Agrobacterium-mediated plant transformation. Plant. Mol. Biol. 43:495–502; 2000.

    Article  PubMed  Google Scholar 

  • Wang, M.-B.; Abhott, D. C.; Upadhyaya, N. M.; Jacobsen, J. V.; Waterhouse, P. M. Agrobacterium tumefaciens-mediated transformation of an elite Australian barley cultivar with virus resistance and reporter genes. Aust. J. Plant Physiol. 28:149–156; 2001.

    Google Scholar 

  • Wang, M.-B.; Upadhyaya, N. M.; Brettell, R. I. S.; Waterhouse, P. M. Intron-mediated improvement of a selectable marker gene for plant transformation using Agrobacterium tumefaciens. J. Genet. Breed 51:325–334; 1997.

    CAS  Google Scholar 

  • Weir, B.; Gu, X.; Wang, M.-B.; Upadhyaya, N.; Elliott, A. R.; Brettell, R. I. Agrobacterium tumefaciens-mediated transformation of wheat using suspension cells as a model system and green fluorescent protein as a visual marker. Aust. J. Plant Physiol. 28:807–818; 2001.

    CAS  Google Scholar 

  • Wenek, A. R.; Quinn, M.; Whetten, R. W.; Pullman, G.; Sederoff, R. High efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda). Plant Mol. Biol. 39:407–416; 1999.

    Article  Google Scholar 

  • Wu, H.; McCormac, A. C.; Elliott, M. C.; Chen, D.-F. Agrobacterium-mediated stable transformation of cell suspension cultures of barley (Hordeum vulgare). Plant Cell Tiss. Organ Cult. 54:161–171; 1998.

    Article  CAS  Google Scholar 

  • Wu, H.; Sparks, C.; Amoah, B.; Jones, H. D. Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Rep. 21:659–668; 2003.

    PubMed  CAS  Google Scholar 

  • Ye, G.-N.; Stone, D.; Pang, S. Z.; Creely, W.; Gonzalez, K.; Hinchee, M. Arabidopsis ovule is the target for Agrobacterium in planta vacuum infiltration transformation. Plant J. 19:249–257; 1999.

    Article  PubMed  Google Scholar 

  • Ye, X.; Al-Babili, S.; Kloti, A.; Zhang, J.; Lucca, P.; Beyer, P.; Potrykus, I. Erigineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Yokoi, S.; Higashi, S.-I.; Kishitani, S.; Murata, N.; Toriyama, K. Introduction of the cDNA for Arabidopsis glycerol-3-phosphate acyltransferase (GPAT) confers unsaturation of fatty acids and chilling tolerance of photosynthesis on rice. Mol. Breed. 4:269–275; 1998.

    Article  CAS  Google Scholar 

  • Yu, T. T.; Skinner, D. Z.; Liang, G. H.; Trick, H. N.; Huang, B.; Muthukrishnan, S. Agrobacterium-mediated transformation of creeping bentgrass using GFP as a reporter gene. Hereditas 133:229–233; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J.; Xu, R.-J.; Elliott, M. C.; Chen, D.-F. Agrobacterium-mediated transformation of elite indica and japonica rice cultivars. Mol. Biotechnol. 8:223–231; 1997.

    PubMed  CAS  Google Scholar 

  • Zhang, W.; Subbarao, S.; Addae, P.; Shen, A.; Armstrong, C.; Peschke, V.; Gilbertson, L. Crellox mediated marker gene excision in transgenic maize (Zea mays L.) plants. Theor. Appl. Genet. 107:1157–1168; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, Z.-Y.; Cai, T.; Tagliani, L.; Miller, M.; Wang, N.; Pang, H.; Rudert, M.; Schroeder, S.; Hondred, D.; Seltzer, J.; Pierce, D. Agrobacterium-mediated sorghum transformation. Plant Mol. Biol. 44:789–798; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, Z.-Y.; Gu, W.; Cai, T.; Tagliani, L.; Hondred, D.; Bond, D.; Schroeder, S.; Rudert, M.; Pierce, D. High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Mol. Breed. 8:323–333; 2001.

    Article  CAS  Google Scholar 

  • Zheng, S.-J.; Khrustaleva, L.; Henken, B.; Jacobsen, E.; Kik, C.; Krens, F. A. Agrobacterium tumefaciens-mediated transformation of Allium cepa L.: the production of transgenic onions and shallots. Mol. Breed. 7:101–115; 2001.

    Article  CAS  Google Scholar 

  • Zhou, H.; Arrowsmith, J. W.; Fromm, M. E.; Hironaka, C. M.; Taylor, M. L.; Rodriguez, D.; Pajeau, M. E.; Brown, S. M.; Santino, C. G.; Fry, J. E. Glyphosate-tolerant CP4 and GOX genes as a selectable marker in wheat transformation. Plant Cell Rep. 15:159–163; 1995.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, M., Lowe, B.A., Spencer, T.M. et al. Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cell.Dev.Biol.-Plant 40, 31–45 (2004). https://doi.org/10.1079/IVP2003501

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2003501

Key words

Navigation