Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-28T14:02:26.244Z Has data issue: false hasContentIssue false

Effect of defaunation on protein and fibre digestion in sheep fed on ammonia-treated straw-based diets with or without maize

Published online by Cambridge University Press:  09 March 2007

K. Ushida
Affiliation:
Station de Recherches sur la Nutrition des Herbivores, Unité de la Digestion Microbienne, INRA, Centre de Recherches de Clermont Ferrand-Theix, 63122 Ceyrat, France
C. Kayouli
Affiliation:
Station de Recherches sur la Nutrition des Herbivores, Unité de la Digestion Microbienne, INRA, Centre de Recherches de Clermont Ferrand-Theix, 63122 Ceyrat, France
S. De Smet
Affiliation:
Station de Recherches sur la Nutrition des Herbivores, Unité de la Digestion Microbienne, INRA, Centre de Recherches de Clermont Ferrand-Theix, 63122 Ceyrat, France
J. P. Jouany
Affiliation:
Station de Recherches sur la Nutrition des Herbivores, Unité de la Digestion Microbienne, INRA, Centre de Recherches de Clermont Ferrand-Theix, 63122 Ceyrat, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using a defaunating method which preserved bacteria and fungi in the rumen, the effect of protozoa on protein and fibre digestion was studied in six adult wethers in relation to the nature of the diet. Sheep were given daily, 42 g dry matter (DM)/kg metabolic body-weight (W0.75), one of two isonitrogenous diets: one contained ammonia-treated wheat straw as the only energy source (diet S) and the other was supplemented with maize grain pellets (diet SM). Mean daily intakes (g/d) of nitrogen, neutral-detergent fibre and acid-detergent fibre were respectively 22, 573 and 373 for diet S and 23, 450 and 334 for diet SM. Elimination of protozoa increased duodenal non-ammonia-nitrogen flow. This result was mainly due to an increase in microbial protein flow and, to a lesser extent, to a higher dietary protein flow. Defaunation markedly increased the efficiency of microbial protein synthesis. Maize-grain supplementation had a net positive effect on this variable in defaunated sheep, but not in faunated sheep. Cell-wall carbohydrates were less well digested in the defaunated rumen, and the negative effect of defaunation was greatest with the diet SM. Intestinal fibre digestion increased in the defaunated sheep especially in those fed on diet SM, but not enough to compensate for the decrease in rumen digestion.

Type
Protein and Fibre Digestion in the Rumen
Copyright
Copyright © The Nutrition Society 1990

References

Bird, S. H., Hill, H. K. & Leng, R. A. (1979). The effects of defaunation of the rumen on the growth of lambs on low-protein high-energy diet. British Journal of Nutrition 42, 8187.CrossRefGoogle Scholar
Bird, S. H. & Leng, R. A. (1978). The effects of defaunation of the rumen on the growth of cattle on low-protein high-energy diets. British Journal of Nutrition 40, 163167.CrossRefGoogle ScholarPubMed
Bird, S. H. & Leng, R. A. (1984). Further studies on the effects of the presence or absence of protozoa in the rumen on live-weight gain and wool growth of sheep. British Journal of Nutrition 52, 607611.CrossRefGoogle ScholarPubMed
Blakeney, A. B., Harris, P. J., Henry, R. J. & Stone, B. A. (1983). A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydrate Research 113, 291299.CrossRefGoogle Scholar
Broudiscou, L., Van Nevel, C. J., Demeyer, D. I. & Jouany, J. P. (1988). Addition d'hydrolysat d'huile de soja dans la ration de mouton. [Addition of a soybean oil hydrolysate to a sheep diet and its effect on in sacco degradation of straw and cellulose.] Reproduction, Nutrition, Développement 28, 159160.CrossRefGoogle Scholar
Chamberlain, D. G., Thomas, P. C. & Anderson, F. J. (1983). Volatile fatty acid proportions and lactic acid metabolism in the rumen in sheep and cattle receiving silage diets. Journal of Agricultural Science, Cambridge 101, 4758.CrossRefGoogle Scholar
Coleman, G. S. (1985). The cellulase content of 15 species of entodiniomorphid protozoa, mixed bacteria and plant debris isolated from ovine rumen. Journal of Agricultural Science. Cambridge 104, 349360.CrossRefGoogle Scholar
Coleman, G. S. (1986). The distribution of carboxymethylcellulase between fractions taken from the rumen of sheep containing no protozoa or one of five different protozoal populations. Journal of Agricultural Science, Cambridge 106, 121127.CrossRefGoogle Scholar
Demeyer, D. I. & Van Nevel, C. J. (1979). Effect of defaunation on the metabolism of rumen micro-organisms. British Journal of Nutrition 42, 515524.CrossRefGoogle Scholar
Eadie, J. M. & Shand, W. J. (1981). The effect of synperonic NP9 upon ciliate-free and faunated sheep. Proceedings of the Nutrition Society 40, 113A.Google Scholar
Ellis, W. C., Lascano, C., Teeter, T. & Owens, F. N. (1982). Solute and particulate flow markers. In Protein Requirements for Cattle, pp. 3756 [Owens, F. N., editor]. Still Water, Oklahoma: Oklahoma State University.Google Scholar
Faichney, G. J. (1975). The use of markers to partition digestion within the gastro-intestinal tract of ruminants. In Digestion and Metabolism in the Ruminant, pp. 261276 [McDonald, I. W. and Warner, A. C. I., editors]. Armidale, NSW: University of New England Publishing Unit.Google Scholar
Gordon, G. L. R. (1984). The potential for manipulation of rumen fungi. Reviews in Rural Science 6, 124128.Google Scholar
Harrison, D. G. & McAllan, A. B. (1980). Factors affecting microbial growth yields in the reticulo-rumen. In Digestive Physiology and Metabolism in Ruminants, pp. 205226 [Ruckebusch, Y. and Thivend, P., editors]. Lancaster: MTP Press Ltd.CrossRefGoogle Scholar
Hungate, R. E. (1966). The Rumen and Its Microbes. New York: Academic Press.Google Scholar
INRA (1978). Alimentation des Ruminants, Versailles, France: INRA Publications.Google Scholar
Joblin, K. N. (1981). Isolation, enumeration, and maintenance of rumen anaerobic fungi in roll tubes. Applied and Environmental Microbiology 42, 11191122.CrossRefGoogle ScholarPubMed
Jouany, J. P. (1978). Contribution à l'étude des protozoaires ciliés du rumen: leur dynamique, leur rôle dans la digestion et leur intèrêt pour le ruminant. These de docteur es sciences, Université de Clermont II.Google Scholar
Jouany, J. P., Demeyer, D. I. & Grain, J. (1988). Effect of defaunating the rumen. Animal Feed Science and Technology 21, 229265.CrossRefGoogle Scholar
Jouany, J. P. & Senaud, J. (1979 a). Role of rumen protozoa in the digestion of food cellulosic materials. Annales de Recherches Vétérinaires 10, 261263.Google ScholarPubMed
Jouany, J. P. & Senaud, J. (1979 b). Defaunation du rumen de mouton. (Defaunation of the sheep rumen.) Annales de Biologie Animale, Biochimie, Biophysique 19, 619624.CrossRefGoogle Scholar
Jouany, J. P. & Senaud, J. (1979 c). Description d'une technique permettant d'effectuer des prélèvements répétés de gaz dans le rumen. [A technique for repeated sampling of rumen gases.] Annales de Biologic Animale, Biochimie, Biophysique 19, 10071010.CrossRefGoogle Scholar
Jouany, J. P. & Senaud, J. (1982). Influence des ciliés du rumen sur la digestion de diffèrents glucides chez le mouton. I. Utilisation des glucides pariétaux (cellulose et hémicelluloses) et de l'amidon. [Effect of rumen ciliates on the digestion of different carbohydrates in sheep I. Utilisation of cell-wall carbohydrates (cellulose and hemicellulose) and starch.] Reproduction, Nutrition, Développement 22, 735752.CrossRefGoogle Scholar
Jouany, J. P. & Senaud, J. (1983). Influence des cilies du rumen sur la digestion de differents glucides chez le mouton. 11. Régimes contenant de l'inuline, du saccharose et du lactose. [Effect of rumen ciliates on the digestive utilization of various carbohydrate-rich diets and on the end-products formed in the rumen. II. Utilization of inulin, saccharose and lactose.] Reproduction, Nutrition, Développement 23, 607623.CrossRefGoogle Scholar
Jouany, J. P., Zainab, B., Senaud, J., Groliere, C. A., Grain, J. & Thivend, P. (1981). Role of rumen ciliate protozoa Polyplastron multivesiculatum, Entodinium sp. and Isotricha prostoma in the digestion of a mixed diet in sheep. Reproduction, Nutrition, Développement 21, 874884.CrossRefGoogle ScholarPubMed
Kaneko, T., Ushida, K. & Kojima, Y. (1989). The effect of starch on cellulolysis by rumen microbial populations with or without protozoa. In The Roles of Protozoa and Fungi in Ruminant Digestion, pp. 313315 [Nolan, J. V., Leng, R. A. and Demeyer, D. I., editors]. Armidale, NSW: Penambul Books.Google Scholar
Kayouli, C., Demeyer, D. I. & Dendooven, R. (19831984). Effect of defaunation on straw digestion in sacco and on particle retention in the rumen. Animal Feed Science and Technology 10, 165172.CrossRefGoogle Scholar
Kayouli, C., Van Nevel, C. & Demeyer, D. (1983). Effet de la défaunation du rumen sur la dégradabilité des proteines du soja mesurée "in sacco". IVth International Symposium "Protein metabolism and nutrition" Clermont-Ferrand (France), Les Colloques de l'INRA, No 16, pp. 251254. [Pion, P., Arnal, M. & Bonin, D., editors]. Versailles, France: INRA Publications.Google Scholar
Kayouli, C., Van Nevel, C. J. & Demeyer, D. I. (1986). Effect of defaunation and refaunation on the rumen fermentation and N-flow in the duodenum of sheep. Archives of Animal Nutrition (Berlin) 36, 827837.Google ScholarPubMed
Kreuzer, M., Kirchgessner, M. & Muller, H. L. (1986). Effect of defaunation on the loss of energy in wethers fed different quantities of cellulose and normal or steamflaked maize starch. Animal Feed Science and Technology 16, 233241.CrossRefGoogle Scholar
Kurihara, Y., Eadie, J. M., Hobson, P. N. & Mann, S. O. (1968). Relationship between bacteria and ciliate protozoa in the sheep rumen. Journal of General Microbiology 51, 267287.CrossRefGoogle ScholarPubMed
Kurihara, Y., Takechi, T. & Shibata, F. (1978). Relationship between bacteria and ciliate protozoa in the rumen of sheep fed on a purified diet. Journal of Agricultural Science, Cambridge 90, 373381.CrossRefGoogle Scholar
Leng, R. A. (1982). Dynamics of protozoa in the rumen of sheep. British Journal of Nutrition 48, 399415.CrossRefGoogle ScholarPubMed
Meyer, J. H. F., Van Der Walt, S. T. & Schwartz, H. M. (1986). The influence of diet and protozoal numbers on the breakdown and synthesis of protein in the rumen of sheep. Journal of Animal Science 62, 509520.CrossRefGoogle Scholar
Romulo, B. H., Bird, S. H. & Leng, R. A. (1986). The effects of defaunation on digestibility and rumen fungi counts in sheep fed high-fibre diets. Proceedings of Australian Society of Animal Production 16, 327330.Google Scholar
Rowe, J. B., Davies, A. & Broome, A. W. J. (1985). Quantitative effects of defaunation on rumen fermentation and digestion in sheep. British Journal of Nutrition 54, 105119.CrossRefGoogle ScholarPubMed
Soetanto, H., Gordon., G. L. R., Hume, I. D. & Leng, R. A. (1985). The role of protozoa and fungi in fibre digestion in the rumen of sheep. In Efficient Animal Production for Asian Welfare. Proceedings of the third AAAP Animal Science Congress, vol. 2, pp. 805807. [The Scientific Committee of Congress, editor] Seoul, Korea: The organizing Committee of the third AAAP Animal Science Committee.Google Scholar
Stern, M. D. & Hoover, W. H. (1979). Methods for determining and factors affecting rumen microbial protein synthesis: A review. Journal of Animal Science 49, 15901970.CrossRefGoogle Scholar
Theander, O. & Aman, P. (1979). Studies of dietary fibres. 1. Analysis and chemical characterization of water soluble and water insoluble dietary fibres. Swedish Journal of Agricultural Research 9, 97106.Google Scholar
Ushida, K. & Jouany, J. P. (1985), Effect of protozoa on rumen protein degradation in sheep. Reproduction, Nutrition, Développement 25, 10751081.CrossRefGoogle ScholarPubMed
Ushida, K., Jouany, J. P. & Demeyer, D. I. (1990). Effects of presence or absence of rumen protozoa on the efficiency of utilization of concentrate and fibrous feeds. In Physiological Aspects and Metabolism in Ruminant. In press [Tsuda, T., Sasaki, Y. and Kawashima, R., editors]. San Diego, California: Academic Press.Google Scholar
Ushida, K., Jouany, J., Lassalas, B. & Thivend, P. (1984). Protozoal contribution to nitrogen digestion in sheep. Canadian Journal of Animal Science 64, Suppl., 2021.CrossRefGoogle Scholar
Ushida, K., Jouany, J. P. & Thivend, P. (1986). Role of rumen protozoa in nitrogen digestion in sheep given two isonitrogenous diets. British Journal of Nutrition 56, 407419.CrossRefGoogle ScholarPubMed
Ushida, K., Kaneko, T. & Kojima, Y. (1987). Effect of presence of large entodiniomorphid protozoa on the rumen bacterial flora, fauna composition of small entodinia and in vitro cellulolysis and xylanolysis. Japanese Journal of Zootechnical Science 58, 893902.Google Scholar
Ushida, K., Takagi, K., Tanaka, H. & Kojima, Y. (1989). Muralytic activities of fungal and bacterial fractions of defaunated rumen fluid against intact or neutral detergent-treated roughages. Asian-Australasian Journal of Animal Science 2, 439440.CrossRefGoogle Scholar
Van Soest, P. J. & Wine, R. H. (1967). Use of detergents in the analysis of fibrous feeds. IV. Determination of plant cell-wall constituents. Journal of Association of Official Analytical Chemists 50, 5055.Google Scholar
Veira, D. M., Ivan, M. & Jui, P. Y. (1983). Rumen ciliate protozoa: Effects on digestion in the stomach of sheep. Journal of Dairy Science 66, 10151022.CrossRefGoogle ScholarPubMed
Weller, R. A. & Pilgrim, A. F. (1974). Passage of protozoa and volatile fatty acids from the rumen of the sheep and from a continuous in vitro fermentation system. British Journal of Nutrition 32, 341351.CrossRefGoogle ScholarPubMed
Williams, A. G. & Coleman, G. S. (1985). Hemicellulose-degrading enzymes in rumen ciliate protozoa. Current Microbiology 12, 8590.CrossRefGoogle Scholar
Williams, A. G. & Orpin, C. G. (1987). Glycoside hydrolase enzymes present in the zoospore and vegetative growth stages of the rumen fungi Neocallimastix patriciarum, Piromonas communis, and an unidentified isolate, grown on a range of carbohydrate. Canadian Journal of Microbiology 33, 427434.CrossRefGoogle Scholar
Williams, A. G. & Strachan, N. H. (1984). The distribution of polysaccharide degrading enzymes in the bovine rumen digesta ecosystems. Current Microbiology 10, 215220.CrossRefGoogle Scholar
Williams, A. G., Strachan, N. H. & Ellis, A. B. (1988). Factors affecting the xylanolytic enzyme activity of microbial populations recovered from the liquid and solid phases of the rumen ecosystem. In Perspectives in Microbial Ecology, Proceedings of IVth International Symposium on Microbial Ecology. pp. 597602 [Megusar, F. and Ganter, M., editors]. Ljubljana, Yugoslavia: Slovene Society for Microbiology.Google Scholar
Williams, A. G., Withers, S. E. & Coleman, G. S. (1984). Glycoside hydrolases of rumen bacteria and protozoa. Current Microbiology 10, 287294.CrossRefGoogle Scholar
Yoder, R. D., Trenkle, A. & Burroughs, W. (1966). Influence of rumen protozoa and bacteria upon cellulose digestion in vitro. Journal of Animal Science 25, 609612.CrossRefGoogle ScholarPubMed