Journal of Biological Chemistry
Volume 280, Issue 39, 30 September 2005, Pages 33157-33164
Journal home page for Journal of Biological Chemistry

Lipids and Lipoproteins
ω-Oxidation of 20-Hydroxyeicosatetraenoic Acid (20-HETE) in Cerebral Microvascular Smooth Muscle and Endothelium by Alcohol Dehydrogenase 4*

https://doi.org/10.1074/jbc.M504055200Get rights and content
Under a Creative Commons license
open access

20-Carboxyeicosatetraenoic acid (20-COOH-AA) is a bioactive metabolite of 20-hydroxyeicosatetraenoic acid (20-HETE), an eicosanoid that produces vasoconstriction in the cerebral circulation. We found that smooth muscle (MSMC) and endothelial (MEC) cultures obtained from mouse brain microvessels convert [3H]20-HETE to 20-COOH-AA, indicating that the cerebral vasculature can produce this metabolite. The [3H]20-COOH-AA accumulated primarily in the culture medium, together with additional radiolabeled metabolites identified as the chain-shortened dicarboxylic acids 18-COOH-18:4, 18-COOH-18:3, and 16-COOH-16:3. N-Heptylformamide, a potent inhibitor of alcohol dehydrogenase (ADH), decreased the conversion of [3H]20-HETE to 20-COOH-AA by the MSMC and MEC and also by isolated mouse brain microvessels. Purified mouse and human ADH4, human ADH3, and horse liver ADH1 efficiently oxidized 20-HETE, and ADH4 and ADH3 were detected in MSMC and MEC by Western blotting. N-Heptylformamide inhibited the oxidation of 20-HETE by mouse and human ADH4 but not by ADH3. These results demonstrated that cerebral microvessels convert 20-HETE to 20-COOH-AA and that ADH catalyzes the reaction. Although ADH4 and ADH3 are expressed in MSMC and MEC, the inhibition produced by N-heptylformamide suggests that ADH4 is primarily responsible for 20-COOH-AA formation in the cerebral microvasculature.

Cited by (0)

*

This work was supported by National Institutes of Health Grants HL72845 (to A. A. S), NS24621 (to S. A. M.), HL62984, HL70860, HL76684 (to N. L. W.), AA00279 (to B. V. P.), GM31278 (to J. R. F.), and AA09731 (to G. D.), Shared Instrumentation Grant RR13799, American Heart Association Research Grant 0230096N (to X. F.), and the Robert A. Welch Foundation (to J. R. F.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.