Protein Synthesis, Post-Translational Modification, and Degradation
Growth Factor-induced Phosphorylation of Sterol Regulatory Element-binding Proteins Inhibits Sumoylation, Thereby Stimulating the Expression of Their Target Genes, Low Density Lipoprotein Uptake, and Lipid Synthesis*

https://doi.org/10.1074/jbc.M800910200Get rights and content
Under a Creative Commons license
open access

The destiny and activity of sterol regulatory element-binding proteins (SREBPs) in the nucleus are regulated by modification with ubiquitin, small ubiquitin-like modifier (SUMO), or phosphorus. ERK-dependent phosphorylation causes an increase in their transcriptional activity, whereas SUMO modification halts it. We hypothesized a causal linkage between phosphorylation and sumoylation because their sites are very closely located in SREBP-1 and -2 molecules. When Ser455, a phosphorylation site in SREBP-2, was substituted with Ala, this SREBP-2 mutant was more efficiently modified by SUMO-1. On the other hand, substitution of Asp inhibited SUMO conjugation, mimicking phosphoserine. When cells were cultured with insulin-like growth factor-1, sumoylation of SREBP-2 was decreased with an increase in its phosphorylation, but SREBP-2(S455A) was continuously sumoylated. An ERK cascade inhibitor, U0126, inversely augmented SUMO modification of SREBP-2. Insulin-like growth factor-1 treatment stimulated the expression of SREBP target genes such as the low density lipoprotein (LDL) receptor, squalene synthase, and hydroxymethylglutaryl-CoA synthase genes. These results indicate that growth factor-induced phosphorylation of SREBP-2 inhibits sumoylation, thereby facilitating SREBP transcriptional activity. Glutathione S-transferase pulldown assays revealed that wild-type SREBP-2, but not a mutant lacking Lys464, interacts with HDAC3 preferentially among the histone deacetylase family members. HDAC3 small interfering RNA induced gene expression of the LDL receptor and thereby augmented fluorescently labeled LDL uptake in HepG2 cells. In summary, growth factors inhibit sumoylation of SREBPs through their phosphorylation, thus avoiding the recruitment of an HDAC3 corepressor complex and stimulating the lipid uptake and synthesis required for cell growth.

Cited by (0)

*

This work was supported by research grants from the Ministry of Education, Science, Sports, and Culture of Japan and the Program for Promotion of Basic Research Activities for Innovative Biosciences. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

The on-line version of this article (available at http://www.jbc.org) contains supplemental Figs. S1–S4.