Mechanisms of Signal Transduction
Distinct hsp70 Domains Mediate Apoptosis-inducing Factor Release and Nuclear Accumulation*

https://doi.org/10.1074/jbc.M513728200Get rights and content
Under a Creative Commons license
open access

Although hsp70 antagonizes apoptosis-inducing factor (AIF)-mediated cell death, the relative importance of preventing its release from mitochondria versus sequestering leaked AIF in the cytosol remains controversial. To dissect these two protective mechanisms, hsp70 deletion mutants lacking either the chaperone function (hsp70-ΔEEVD) or ATPase function (hsp70-ΔATPase) were selectively overexpressed before exposing cells to a metabolic inhibitor, an insult sufficient to cause mitochondrial AIF release, nuclear AIF accumulation, and apoptosis. Compared with empty vector, overexpression of wild type human hsp70 inhibited bax activation and reduced mitochondrial AIF release after injury. In contrast, mutants lacking either the chaperone function (hsp70-ΔEEVD) or the ATP hydrolytic domain (hsp70-ΔATPase) failed to prevent mitochondrial AIF release. Although hsp70-ΔEEVD did not inhibit bax activation or mitochondrial membrane injury after cell stress, this hsp70 mutant co-immunoprecipitated with leaked AIF in injured cells and decreased nuclear AIF accumulation. In contrast, hsp70-ΔATPase did not interact with AIF either in intact cells or in a cell-free system and furthermore, failed to prevent nuclear AIF accumulation. These results demonstrate that mitochondrial protection against bax-mediated injury requires both intact chaperone and ATPase functions, whereas the ATPase domain is critical for sequestering AIF in the cytosol.

Cited by (0)

*

This work was supported by National Institutes of Health Grants DK-53387 (to S. C. B.) and DK-52898 (to J. H. S.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1

Both authors contributed equally to the preparation of this manuscript.