MOLECULAR BASIS OF CELL AND DEVELOPMENTAL BIOLOGY
Preadipocyte Conversion to Macrophage: EVIDENCE OF PLASTICITY*

https://doi.org/10.1074/jbc.M210811200Get rights and content
Under a Creative Commons license
open access

Preadipocytes are present throughout adult life in adipose tissues and can proliferate and differentiate into mature adipocytes according to the energy balance. An increasing number of reports demonstrate that cells from adipose lineages (preadipocytes and adipocytes) and macrophages share numerous functional or antigenic properties. No large scale comparison reflecting the phenotype complexity has been performed between these different cell types until now. We used profiling analysis to define the common features shared by preadipocyte, adipocyte, and macrophage populations. Our analysis showed that the preadipocyte profile is surprisingly closer to the macrophage than to the adipocyte profile. From these data, we hypothesized that in a macrophage environment preadipocytes could effectively be converted into macrophages. We injected labeled stroma-vascular cells isolated from mouse white adipose tissue or 3T3-L1 preadipocyte cell line into the peritoneal cavity of nude mice and investigated changes in their phenotype. Preadipocytes rapidly and massively acquired high phagocytic activity and index. 60–70% of preadipocytes also expressed five macrophage-specific antigens: F4/80, Mac-1, CD80, CD86, and CD45. These values were similar to those observed for peritoneal macrophages.In vitro experiments showed that cell-to-cell contact between preadipocytes and peritoneal macrophages partially induced this preadipocyte phenotype conversion. Overall, these results suggest that preadipocyte and macrophage phenotypes are very similar and that preadipocytes have the potential to be very efficiently and rapidly converted into macrophages. This work emphasizes the great cellular plasticity of adipose precursors and reinforces the link between adipose tissue and innate immunity processes.

Cited by (0)

Published, JBC Papers in Press, January 7, 2003, DOI 10.1074/jbc.M210811200

*

This work was supported by Grant 4CS01F from Génopôle Toulouse and Association Française contre les Myopathies/INSERM.The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

§

Recipient of a fellowship from the Ministry of National Education, Research and Technology.