Journal of Biological Chemistry
Volume 276, Issue 38, 21 September 2001, Pages 35280-35289
Journal home page for Journal of Biological Chemistry

MECHANISMS OF SIGNAL TRANSDUCTION
Altered Regulation of ERK1b by MEK1 and PTP-SL and Modified Elk1 Phosphorylation by ERK1b Are Caused by Abrogation of the Regulatory C-terminal Sequence of ERKs*

https://doi.org/10.1074/jbc.M105995200Get rights and content
Under a Creative Commons license
open access

ERK1b is an alternatively spliced form of ERK1, containing a 26-amino acid insertion between residues 340 and 341 of ERK1. Although under most circumstances the kinetics of ERK1b activation are similar to that of ERK1 and ERK2, we have previously found several conditions under which the activation of ERK1b by extracellular stimuli differs from that of other ERKs. We studied the molecular mechanisms that cause this differential regulation of ERK1b and found that ERK1b is altered in its ability to interact with MEK1 and this influenced its subcellular localization but not its kinetics of activation. ERK1b had a decreased ability to phosphorylate Elk1, but this did not change much the transcriptional activity of the latter. Importantly, the interaction of ERK1b with PTP-SL, which can act as a MAPK phosphatase, shortly after mitogenic stimulation, was significantly affected as well. Using mutants of ERK1b we found that the differential interaction of ERK1b with the three effectors is caused by the site of insertion that abrogates the cytosolic retention sequence/common docking motif of ERKs, and is not dependent on the actual sequence of the insert. Prolonged epidermal growth factor stimulation of Rat1 cells resulted in a differential inactivation and not activation of ERK1b as compared with ERK1 and ERK2. The reduced sensitivity to phosphatases without major differences in the kinetics of activation or activation of substrates, suggests that ERK1b plays a role in the transmission of extracellular signals under conditions of persistent stimulation, where ERK1b and MAPK phosphatases are induced, and the activity of ERK1 and ERK2 is suppressed.

Cited by (0)

Published, JBC Papers in Press, July 19, 2001, DOI 10.1074/jbc.M105995200

*

This work was supported by grants from the Estate of Siegmund Landau, the Benozyio Institute for Molecular Medicine, the Moross Institute for Cancer Research at the Weizmann Institute of Science, the Israel Academy of Sciences and Humanities (to R. S.), and the Swiss National Science Foundation (to D. M. A.).The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.