Journal of Biological Chemistry
Volume 276, Issue 4, 26 January 2001, Pages 2571-2575
Journal home page for Journal of Biological Chemistry

METABOLISM AND BIOENERGETICS
Opening of the Mitochondrial Permeability Transition Pore Causes Depletion of Mitochondrial and Cytosolic NAD+and Is a Causative Event in the Death of Myocytes in Postischemic Reperfusion of the Heart*

https://doi.org/10.1074/jbc.M006825200Get rights and content
Under a Creative Commons license
open access

The opening of the mitochondrial permeability transition pore (PTP) has been suggested to play a key role in various forms of cell death, but direct evidence in intact tissues is still lacking. We found that in the rat heart, 92% of NAD+glycohydrolase activity is associated with mitochondria. This activity was not modified by the addition of Triton X-100, although it was abolished by mild treatment with the protease Nagarse, a condition that did not affect the energy-linked properties of mitochondria. The addition of Ca2+ to isolated rat heart mitochondria resulted in a profound decrease in their NAD+ content, which followed mitochondrial swelling. Cyclosporin A(CsA), a PTP inhibitor, completely prevented NAD+ depletion but had no effect on the glycohydrolase activity. Thus, in isolated mitochondria PTP opening makes NAD+ available for its enzymatic hydrolysis. Perfused rat hearts subjected to global ischemia for 30 min displayed a 30% decrease in tissue NAD+ content, which was not modified by extending the duration of ischemia. Reperfusion resulted in a more severe reduction of both total and mitochondrial contents of NAD+, which could be measured in the coronary effluent together with lactate dehydrogenase. The addition of 0.2 μm CsA or of its analogue MeVal-4-Cs (which does not inhibit calcineurin) maintained higher NAD+ contents, especially in mitochondria, and significantly protected the heart from reperfusion damage, as shown by the reduction in lactate dehydrogenase release. Thus, upon reperfusion after prolonged ischemia, PTP opening in the heart can be documented as a CsA-sensitive release of NAD+, which is then partly degraded by glycohydrolase and partly released when sarcolemmal integrity is compromised. These results demonstrate that PTP opening is a causative event in reperfusion damage of the heart.

Cited by (0)

Published, JBC Papers in Press, November 9, 2000, DOI 10.1074/jbc.M006825200

*

This work was supported by grants from the Consiglio Nazionale delle Ricerche and the Ministero per l'Università e la Ricerca Scientifica e Tecnologica “Il mantenimento della vitalità miocardica a discapito della necrosi” (to F. D. L.) and “Bioenergetica e Trasporto di Membrana” (to P. B.).The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.