Genomics, Proteomics, and Bioinformatics
Expression Profile of Osteoblast Lineage at Defined Stages of Differentiation*

https://doi.org/10.1074/jbc.M413834200Get rights and content
Under a Creative Commons license
open access

The inherent heterogeneity of bone cells complicates the interpretation of microarray studies designed to identify genes highly associated with osteoblast differentiation. To overcome this problem, we have utilized Col1a1 promoter-green fluorescent protein transgenic mouse lines to isolate bone cells at distinct stages of osteoprogenitor maturation. Comparison of gene expression patterns from unsorted or isolated sorted bone cell populations at days 7 and 17 of calvarial cultures revealed an increased specificity regarding which genes are selectively expressed in a subset of bone cell types during differentiation. Furthermore, distinctly different patterns of gene expression associated with major signaling pathways (Igf1, Bmp, and Wnt) were observed at different levels of maturation. Some of our data differ from current models of osteoprogenitor cell differentiation and emphasize components of the pathways that were not revealed in studies based on a total cell population. Thus, applying methods to generate more homogeneous populations of cells at a defined level of cellular differentiation from a primary osteogenic culture is feasible and leads to a novel interpretation of the gene expression associated with increasing levels of osteoprogenitor maturation.

Cited by (0)

*

This work was supported in part by grants from the Public Health Department and by National Institutes of Health Grants U01-DK63478, P20 GM65764, and P30 46026 (to D. W. R.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

The on-line version of this article (available at http://www.jbc.org) contains supplemental tables.

§

Supported by a fellowship from Children's Brittle Bone Foundation.