Mechanisms of Signal Transduction
Sequential Binding of Agonists to the β2 Adrenoceptor: KINETIC EVIDENCE FOR INTERMEDIATE CONFORMATIONAL STATES*

https://doi.org/10.1074/jbc.M310888200Get rights and content
Under a Creative Commons license
open access

The β2 adrenoreceptor (β2AR) is a prototypical G protein-coupled receptor (GPCR) activated by catecholamines. Agonist activation of GPCRs leads to sequential interactions with heterotrimeric G proteins, which activate cellular signaling cascades, and with GPCR kinases and arrestins, which attenuate GPCR-mediated signaling. We used fluorescence spectroscopy to monitor catecholamine-induced conformational changes in purified β2AR. Here we show that upon catecholamine binding, β2ARs undergo transitions to two kinetically distinguishable conformational states. Using a panel of chemically related catechol derivatives, we identified the specific chemical groups on the agonist responsible for the rapid and slow conformational changes in the receptor. The conformational changes observed in our biophysical assay were correlated with biologic responses in cellular assays. Dopamine, which induces only a rapid conformational change, is efficient at activating Gs but not receptor internalization. In contrast, norepinephrine and epinephrine, which induce both rapid and slow conformational changes, are efficient at activating Gs and receptor internalization. These results support a mechanistic model for GPCR activation where contacts between the receptor and structural determinants of the agonist stabilize a succession of conformational states with distinct cellular functions.

Cited by (0)

*

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.