Enzymology
A Flavin-dependent Monooxygenase from Mycobacterium tuberculosis Involved in Cholesterol Catabolism*

https://doi.org/10.1074/jbc.M109.099028Get rights and content
Under a Creative Commons license
open access

Mycobacterium tuberculosis (Mtb) and Rhodococcus jostii RHA1 have similar cholesterol catabolic pathways. This pathway contributes to the pathogenicity of Mtb. The hsaAB cholesterol catabolic genes have been predicted to encode the oxygenase and reductase, respectively, of a flavin-dependent mono-oxygenase that hydroxylates 3-hydroxy-9,10-seconandrost-1,3,5(10)-triene-9,17-dione (3-HSA) to a catechol. An hsaA deletion mutant of RHA1 did not grow on cholesterol but transformed the latter to 3-HSA and related metabolites in which each of the two keto groups was reduced: 3,9-dihydroxy-9,10-seconandrost-1,3,5(10)-triene-17-one (3,9-DHSA) and 3,17-dihydroxy-9,10-seconandrost-1,3,5(10)-triene-9-one (3,17-DHSA). Purified 3-hydroxy-9,10-seconandrost-1,3,5(10)-triene-9,17-dione 4-hydroxylase (HsaAB) from Mtb had higher specificity for 3-HSA than for 3,17-DHSA (apparent kcat/Km = 1000 ± 100 m−1 s−1 versus 700 ± 100 m−1 s−1). However, 3,9-DHSA was a poorer substrate than 3-hydroxybiphenyl (apparent kcat/Km = 80 ± 40 m−1 s−1). In the presence of 3-HSA the Kmapp for O2 was 100 ± 10 μm. The crystal structure of HsaA to 2.5-Å resolution revealed that the enzyme has the same fold, flavin-binding site, and catalytic residues as p-hydroxyphenyl acetate hydroxylase. However, HsaA has a much larger phenol-binding site, consistent with the enzyme's substrate specificity. In addition, a second crystal form of HsaA revealed that a C-terminal flap (Val367–Val394) could adopt two conformations differing by a rigid body rotation of 25° around Arg366. This rotation appears to gate the likely flavin entrance to the active site. In docking studies with 3-HSA and flavin, the closed conformation provided a rationale for the enzyme's substrate specificity. Overall, the structural and functional data establish the physiological role of HsaAB and provide a basis to further investigate an important class of monooxygenases as well as the bacterial catabolism of steroids.

Bacterial Metabolism
Flavoproteins
Kinetics
Steroid
X-ray Crystallography
Monooxygenase
Mycobacterium tuberculosis
Phenol

Cited by (0)

The atomic coordinates and structure factors (codes 3AFE and 3AFF) have been deposited in the Protein Data Bank, Research Collaboratory for Structural Bioinformatics, Rutgers University, New Brunswick, NJ (http://www.rcsb.org/).

*

This work was supported by grants from the Canadian Institute for Health Research (to L. D. E. and N. S., respectively) and the Michael Smith Foundation for Health Research (MSFHR) Infrastructure (to N. S.) and Emerging Team programs.

The on-line version of this article (available at http://www.jbc.org) contains supplemental Figs. 1–3, text, and references.

1

Both authors contributed equally to this work.

2

Recipient of a postdoctoral fellowship from the Deutsche Forschungsgemeinschaft.

3

Recipients of a postdoctoral fellowship from MSFHR.

4

An HHMI International Scholar and an MSFHR Senior Scholar.