Membrane Transport, Structure, Function, and Biogenesis
The Tether Connecting Cytosolic (N Terminus) and Membrane (C Terminus) Domains of Yeast V-ATPase Subunit a (Vph1) Is Required for Assembly of V0 Subunit d*

https://doi.org/10.1074/jbc.M109.013375Get rights and content
Under a Creative Commons license
open access

V-ATPases are molecular motors that reversibly disassemble in vivo. Anchored in the membrane is subunit a. Subunit a has a movable N terminus that switches positions during disassembly and reassembly. Deletions were made at residues securing the N terminus of subunit a (yeast isoform Vph1) to its membrane-bound C-terminal domain in order to understand the role of this conserved region for V-ATPase function. Shrinking of the tether made cells pH-sensitive (vma phenotype) because assembly of V0 subunit d was harmed. Subunit d did not co-immunoprecipitate with subunit a and the c-ring. Cells contained pools of V1 and V0(−d) that failed to form V1V0, and very low levels of V-ATPase subunits were found at the membrane. Although subunit d expression was stable and at wild-type levels, growth defects were rescued by exogenous VMA6 (subunit d). Stable V1V0 assembled after yeast cells were co-transformed with VMA6 and mutant VPH1. Tether-less V1V0 was delivered to the vacuole and active. It retained 63–71% of the wild-type activity and was responsive to glucose. Tether-less V1V0 disassembled and reassembled after brief glucose depletion and readdition. The N terminus retained binding to V1 subunits and the C terminus to phosphofructokinase. Thus, no major structural change was generated at the N and C termini of subunit a. We concluded that early steps of V0 assembly and trafficking were likely impaired by shorter tethers and rescued by VMA6.

Cited by (0)

*

This work was supported by National Science Foundation CAREER Award MCB-0728833 (to K. J. P.). This project was also supported, in part, by the Dedicated Health Research Funds of the University of New Mexico School of Medicine (to K. J. P.).

1

Both authors contributed equally to this work.

2

Present address: Dept. of Oral Biology School of Dentistry Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202.