Journal of Biological Chemistry
Volume 275, Issue 5, 4 February 2000, Pages 3305-3312
Journal home page for Journal of Biological Chemistry

PROTEIN STRUCTURE AND FOLDING
The hsp90-related Protein TRAP1 Is a Mitochondrial Protein with Distinct Functional Properties*

https://doi.org/10.1074/jbc.275.5.3305Get rights and content
Under a Creative Commons license
open access

The hsp90 family of molecular chaperones was expanded recently due to the cloning of TRAP1 and hsp75 by yeast two-hybrid screens. Careful analysis of the human TRAP1 and hsp75 sequences revealed that they are identical, and we have cloned a similar protein from Drosophila. Immunofluorescence data show that human TRAP1 is localized to mitochondria. This mitochondrial localization is supported by the existence of mitochondrial localization sequences in the amino termini of both the human andDrosophila proteins. Due to the striking homology of TRAP1 to hsp90, we tested the ability of TRAP1 to function as an hsp90-like chaperone. TRAP1 did not form stable complexes with the classic hsp90 co-chaperones p23 and Hop (p60). Consistent with these observations, TRAP1 had no effect on the hsp90-dependent reconstitution of hormone binding to the progesterone receptor in vitro, nor could it substitute for hsp90 to promote maturation of the receptor to its hormone-binding state. However, TRAP1 is sufficiently conserved with hsp90 such that it bound ATP, and this binding was sensitive to the hsp90 inhibitor geldanamycin. In addition, TRAP1 exhibited ATPase activity that was inhibited by both geldanamycin and radicicol. Thus, TRAP1 has functions that are distinct from those of hsp90.

Cited by (0)

*

This work was supported by National Institutes of Health Grants DK46249 (to D. O. T.) and CA73023 and CA67891 (to D. B. D.).The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

The nucleotide sequence(s) reported in this paper has been submitted to the GenBank™/EMBL Data Bank with accession number(s) AF115775.