Journal of Biological Chemistry
Volume 270, Issue 33, 18 August 1995, Pages 19417-19421
Journal home page for Journal of Biological Chemistry

Cell Biology and Metabolism
Glycoprotein 330/Low Density Lipoprotein Receptor-related Protein-2 Mediates Endocytosis of Low Density Lipoproteins via Interaction with Apolipoprotein B100 (∗)

https://doi.org/10.1074/jbc.270.33.19417Get rights and content
Under a Creative Commons license
open access

The ability of glycoprotein 330/low density lipoprotein receptor-related protein-2 (LRP-2) to function as a lipoprotein receptor was investigated using cultured mouse F9 teratocarcinoma cells. Treatment with retinoic acid and dibutyryl cyclic AMP, which induces F9 cells to differentiate into endoderm-like cells, produced a 50-fold increase in the expression of LRP-2. Levels of the other members of the low density lipoprotein (LDL) receptor (LDLR) family, including LDLR, the very low density lipoprotein receptor, and LRP-1, were reduced. When LDL catabolism was examined in these cells, it was found that the treated cells endocytosed and degraded at 10-fold higher levels than untreated cells. The increased LDL uptake coincided with increased LRP-2 activity of the treated cells, as measured by uptake of both 125I-labeled monoclonal LRP-2 antibody and the LRP-2 ligand prourokinase. The ability of LDL to bind to LRP-2 was demonstrated by solid-phase binding assays. This binding was inhibitable by LRP-2 antibodies, receptor-associated protein (the antagonist of ligand binding for all members of the LDLR family), or antibodies to apoB100, the major apolipoprotein component of LDL. In cell assays, LRP-2 antibodies blocked the elevated 125I-LDL internalization and degradation observed in the retinoic acid/dibutyryl cyclic AMP-treated F9 cells. A low level of LDL endocytosis existed that was likely mediated by LDLR since it could not be inhibited by LRP-2 antibodies, but was inhibited by excess LDL, receptor-associated protein, or apoB100 antibody. The results indicate that LRP-2 can function to mediate cellular endocytosis of LDL, leading to its degradation. LRP-2 represents the second member of the LDLR family identified as functioning in the catabolism of LDL.

Cited by (0)

This work was supported by National Institutes of Health Grants DK45598 (to W. S. A.), HL49264 (to D. A. C.), and GM42581 and HL50787 (to D. K. S.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore by hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.