Skip to main content
Log in

Effect of acibenzolar-S-methyl and Saccharomyces cerevisiae on the activation of Eucalyptus defences against rust

  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

Tree defence mechanisms against the fungus Puccinia psidii were examined by comparing the activities of defence-related enzymes (chitinase, peroxidase and phenylalanine ammonia-lyase) of two Eucalyptus grandis × E. urophylla (urograndis) hybrids, previously classified as either susceptible to rust (VR hybrid) or moderately resistant to rust (C0 hybrid). Furthermore, the potential of disease control by artificial activation of host defences using either acibenzolar-S-methyl (ASM) or Saccharomyces cerevisiae extract was also investigated. Greenhouse inoculation trials revealed that the C0 hybrid had lower disease severity than the VR hybrid but following foliar applications of either ASM or S. cerevisiae extract treatment, disease severity (evaluated at 15 days after inoculation) was reduced in both hybrids. This enhanced resistance was associated with the induction of a hypersensitive reaction which appeared to be effective in controlling rust in both clones. The activity of all enzymes differed between clones and inducer treatment. The role of the defence-related enzymes in imparting resistance to eucalypt hybrids against rust is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abo-Elyousr KAM, El-Hendawy HH (2008) Integration of Pseudomonas fluorescens and acibenzolar-S-methyl to control bacterial spot disease of tomato. Crop Protection (Guildford, Surrey) 27, 1118–1124. doi: 10.1016/j.cropro.2008.01.011

    Article  CAS  Google Scholar 

  • Amzalek E, Cohen Y (2007) Comparative efficacy of systemic acquired resistance-inducing compounds against rust infection in sunflower plants. Phytopathology 97, 179–186. doi: 10.1094/PHYTO-97-2-0179

    Article  CAS  PubMed  Google Scholar 

  • Anjana G, Kini KR, Shetty HS, Prakash HS (2008) Changes in peroxidase activity in sunflower during infection by necrotrophic pathogen Alternaria helianthi. Archives of Phytopathology and Plant Protection 41, 586–596. doi: 10.1080/03235400600914280

    Article  CAS  Google Scholar 

  • Benhamou N, Belanger R (1998) Benzothiazole-mediated induced resistance to Fusarium oxysporum f. sp. radicis in tomato. Plant Physiology 118, 1203–1212. doi: 10.1104/pp.118.4.1203

    Article  CAS  PubMed  Google Scholar 

  • Boava LP (2008) Ação de indutores bióticos e abióticos no controle da ferrugem do eucalipto, atividade enzimática e expressão gênica durante o processo de infecção. PhD Thesis, Department of Plant Production, Agronomical Sciences College, São Paulo State University-UNESP, Botucatu.

    Google Scholar 

  • Campos AD, Ferreira AG, Hampe MMV, Antunes IF, Brancão N, Silveira EP, Silva JB, Osório VA (2003) Induction of chalcone synthase and phenylalanine ammonia-lyase by salicylic acid and Colletotrichum lindemuthianum in common bean. Brazilian Journal of Plant Physiology 15, 129–134. doi: 10.1590/S1677-04202003000300001

    Article  CAS  Google Scholar 

  • Cavalcanti FR, Resende MLV, Carvalho CPS, Silveira JAG, Oliveira JTA (2007) An aqueous suspension of Crinipellis perniciosa mycelium activates tomato defense responses against Xanthomonas vesicatoria. Crop Protection (Guildford, Surrey) 26, 729–738. doi: 10.1016/j.cropro.2006.06.012

    Article  Google Scholar 

  • Chittoor JM, Leach JE, White FF (1997) Differential induction of a peroxidase gene family during infection of rice by Xanthomonas oryzae pv. oryzae. Molecular Plant-Microbe Interactions 10, 861–871. doi: 10.1094/MPMI.1997.10.7.861

    Article  CAS  PubMed  Google Scholar 

  • Coutinho TA, Wingfield MJ, Alfenas AC, Crous PW (1998) Eucalyptus rust: a disease with the potential for serious international implications. Plant Disease 82, 819–825. doi: 10.1094/PDIS.1998.82.7.819

    Article  Google Scholar 

  • Darras AI, Joyce DC, Terry LA, Pompodakis NE, Dimitriadis CI (2007) Efficacy of postharvest treatments with acibenzolar-S-methyl and methyl jasmonate against Botrytis cinerea infecting cut Freesia hybrida L. flowers. Australasian Plant Pathology 36, 332–340. doi: 10.1071/AP07030

    Article  CAS  Google Scholar 

  • El-Ghaouth A, Wilson CL, Wisniewski M (2003) Control of postharvest decay of apple fruit with Candida saitoana and induction of defense responses. Phytopathology 93, 344–348. doi: 10.1094/PHYTO.2003.93.3.344

    Article  PubMed  Google Scholar 

  • Faessel L, Nassr N, Lebeau T, Walter B (2008) Effects of the plant defense inducer, acibenzolar-S-methyl, on hypocotyl rot of soybean caused by Rhizoctonia solani AG-4. Journal of Phytopathology 156, 236–242. doi: 10.1111/j.1439-0434.2007.01367.x

    Article  CAS  Google Scholar 

  • Ferreira FA, Silva ARC (1982) Comportamento de procedências de Eucalyptus grandis e de E. saligna à ferrugem (Puccinia psidii). Fitopatologia Brasileira 7, 23–27.

    Google Scholar 

  • Forslund K, Pettersson J, Bryngelsson T, Jonsson L (2000) Aphid infestation induces PR-proteins differently in barley susceptible or resistant to the birdcherry-oat aphid (Rhopalosiphum padi). Plant Physiology 110, 496–502. doi: 10.1111/j.1399-3054.2000.1100411.x

    Article  CAS  Google Scholar 

  • Fun RWM, Gonzalo M, Fekete C, Kovacs LG, He Y, Marsh E, McIntyre LM, Schachtman DP, Qiu W (2008) Powdery mildew induces defense-oriented reprogramming of the transcriptome in a susceptible but not in a resistant grapevine. Plant Physiology 146, 236–249.

    Google Scholar 

  • Gallao MI, Cortelazzo AL, Fevereiro MPS (2007) Respostas a quitina em cultura de células de Citrus aurantium em suspensão. Journal of Plant Physiology 19, 69–76.

    CAS  Google Scholar 

  • Glen M, Alfenas AC, Zauza EAV, Wingfield MJ, Mohammed C (2007) Puccinia psidii: a threat to the Australian environment and economy — a review. Australasian Plant Pathology 36, 1–16. doi: 10.1071/AP06088

    Article  Google Scholar 

  • Graham LS, Sticklen MB (1994) Plant chitinases. Canadian Journal of Botany 72, 1057–1083.

    Article  CAS  Google Scholar 

  • Grgurinovic CA, Walsh D, Macbeth F (2006) Eucalyptus rust caused by Puccinia psidii and the threat it poses to Australia. EPPO Bulletin 36, 486–489. doi: 10.1111/j.1365-2338.2006.01048.x

    Article  Google Scholar 

  • Guzzo SD, Castro RM, Kida K, Martins EMF (2001) Ação protetora do acibenzolar-S-methyl em plantas de cafeeiro contra ferrugem. Arquivos do Instituto Biologico 68, 89–94.

    Google Scholar 

  • Hammerschmidt H, Dann EK (1997) Induced resistance to disease. In ‘Environmentally safe approaches to crop disease control’. (Eds NA Rechcigl, JE Rechcigl) pp. 177–199. (CRC — Lewis Publishers: Boca Raton, FL)

    Google Scholar 

  • Hammerschmidt R, Kuc J (1982) Lignification as a mechanism for induced systemic resistance in cucumber. Physiological and Molecular Plant Pathology 20, 61–71. doi: 10.1016/0048-4059(82)90024-8

    Article  CAS  Google Scholar 

  • Han Y, Wang Y, Bi J-L, Yang X-Q, Huang Y, Zhao X, Hu Y, Cai Q-N (2009) Constitutive and induced activities of defense-related enzymes in aphid-resistant and aphid-susceptible cultivars of wheat. Journal of Chemical Ecology 35, 176–182. doi: 10.1007/s10886-009-9589-5

    Article  CAS  PubMed  Google Scholar 

  • Iriti M, Mapelli S, Faoro F (2007) Chemical-induced resistance against post-harvest infection enhances tomato nutritional traits. Food Chemistry 105, 1040–1046. doi: 10.1016/j.foodchem.2007.04.073

    Article  CAS  Google Scholar 

  • Jiang S, Park P, Ishii H (2008) Ultrastructural study on acibenzolar-S-methyl-induced scab resistance in epidermal pectin layers of Japanese pear leaves. Phytopathology 98, 585–591. doi: 10.1094/PHYTO-98-5-0585

    Article  CAS  PubMed  Google Scholar 

  • Junghans DT, Alfenas AC, Brommonschenkel SH, Oda S, Mello EJ, Grattapaglia D (2003) Resistance to rust (Puccinia psidii Winter) in Eucalyptus: mode of inheritance and mapping of a major gene with RAPD markers. Theoretical and Applied Genetics 108, 175–180. doi: 10.1007/s00122-003-1415-9

    Article  CAS  PubMed  Google Scholar 

  • Kiba A, Kanemitsu TT, Toyoda K, Ichinose Y, Yamada T, Shiraishi T (1999) Induction of defense responses by synthetic glycopeptides that have a partial structure of the elicitor in the spore germination fluid of Mycosphaerella pinodes. Plant & Cell Physiology 40, 978–985.

    CAS  Google Scholar 

  • Kuhn OJ, Pascholati SF, Cardoso Filho JA, Portz RL, Osswald W (2006) Indução de resistência sistêmica em plantas: aspectos gerais, efeitos na produção e sobre microrganismos não-alvo. Revisão Anual de Patologia de Plantas 14, 249–300.

    Google Scholar 

  • Latunde-Dada AO, Lucas JA (2001) The plant defense activator acibenzolar-S-methyl primes cowpea [Vigna unguiculata (L.) Walp] seedlings for rapid induction of resistance. Physiological and Molecular Plant Pathology 58, 199–208. doi: 10.1006/pmpp.2001.0327

    Article  CAS  Google Scholar 

  • Lawrence CB, Joosten MA, Tuzun S (1996) Differential induction of pathogenesis-related proteins in tomato by Alternaria solani and the association of a basic chitinase isozyme with resistance. Physiological and Molecular Plant Pathology 48, 361–377. doi: 10.1006/pmpp.1996.0029

    Article  CAS  Google Scholar 

  • Lipke PN, Ovalle R (1998) Cell wall architecture in yeast: new structure and new challenges. Journal of Bacteriology 180, 3735–3740.

    CAS  PubMed  Google Scholar 

  • Lusso MFG, Pascholati SF (1999) Activity and isoenzymatic pattern of soluble peroxidases in maize tissues after mechanical injury or fungal inoculation. Summa Phytopathologica 25, 244–249.

    CAS  Google Scholar 

  • Mandal B, Mandal S, Csinos AS, Martinez N, Culbreath AK, Pappu HR (2008) Biological and molecular analyses of the acibenzolar-S-methylinduced systemic acquired resistance in flue-cured tobacco against Tomato spotted wilt virus. Phytopathology 98, 196–204. doi: 10.1094/PHYTO-98-2-0196

    Article  CAS  PubMed  Google Scholar 

  • Moerschbacher BM (1992) Plant peroxidases: involvement in response to pathogenes. In ‘Plant peroxidases 1980–1990.’ (Eds C Penel, T Gaspar, H Greppin) pp. 91–99. (University of Geneva: Geneva)

    Google Scholar 

  • Moon DH, Salvatierra GR, Caldas DGG, Carvalho MC, Carneiro RT, Franceschini LM, Oda S, Labate CA (2007) Comparison of the expression profiles of susceptible and resistant Eucalyptus grandis exposed to Puccinia psidii Winter using SAGE. Functional Plant Biology 34, 1010–1018. doi: 10.1071/FP07094

    Article  Google Scholar 

  • Okun DO, Kenyal EU, Oballa PO, Odee DW, Muluvi GM (2008) Analysis of genetic diversity in Eucalyptus grandis (Hill ex Maiden) seed sources using inter simple sequence repeats (ISSR) molecular markers. African Journal of Biotechnology 7, 2119–2123.

    CAS  Google Scholar 

  • Park K, Paul D, Kim HK, Nam KW, Lee YK, Choi HW, Yeob S (2007) Induced systemic resistance by Bacillus vallismortis EXTN-1 suppressed bacterial wilt in tomato caused by Ralstonia solanacearum. The Plant Pathology Journal 23, 22–25.

    Article  Google Scholar 

  • Pascholati SF, Leite B (1995) Hospedeiro: mecanismos de resistência. In ‘Manual de Fitopatologia: princípios e conceitos.’ 3rd edn. (Eds A Filho Bergamin, H Kimati, L Amorin) pp. 417–453. (Agronômica Ceres: São Paulo)

    Google Scholar 

  • Potlakayala SD, Reed DW, Covello PS, Fobert PR (2007) Systemic acquired resistance in canola is linked with pathogenesis-related gene expression and requires salicylic acid. Phytopathology 97, 794–802. doi: 10.1094/PHYTO-97-7-0794

    Article  CAS  PubMed  Google Scholar 

  • Raacke IC, Von Rad U, Mueller MJ, Berger S (2006) Yeast increases resistance in Arabidopsis against Pseudomonas syringae and Botrytis cinerea by salicylic acid-dependent as well as independent mechanisms. Molecular Plant-Microbe Interactions 19, 1138–1146. doi: 10.1094/MPMI-19-1138

    Article  CAS  PubMed  Google Scholar 

  • Radwan DEM, Lu G, Fayez KA, Mahmoud SY (2008) Protective action of salicylic acid against bean yellow mosaic virus infection in Vicia faba leaves. Journal of Plant Physiology 165, 845–857. doi: 10.1016/j.jplph.2007.07.012

    Article  CAS  PubMed  Google Scholar 

  • Ramesh Sundar AR, Velazhahan R, Nagarathinam S, Vidhyasekaran P (2008) Induction of pathogenesis-related proteins in sugarcane leaves and cell-cultures by a glycoprotein elicitor isolated from Colletotrichum falcatum. Biologia Plantarum 52, 321–328. doi: 10.1007/s10535-008-0066-8

    Article  Google Scholar 

  • Reglinski T, Newton AC, Lyon GD (1994) Assessment of the ability of yeast-derived elicitors to control powdery mildew in the field. Journal of Plant Disease 101, 1–10.

    CAS  Google Scholar 

  • Resende MLV, Nojosa GBA, Cavalcanti LS, Aguilar MAG, Silva LC, Perez JO, Andrade GCG, Carvalho GA, Castro RM (2002) Induction of resistance in cocoa against Crinipellis perniciosa and Verticillium dahliae by acibenzolar-S-methyl (ASM). Plant Pathology 51, 621–628. doi: 10.1046/j.1365-3059.2002.00754.x

    Article  CAS  Google Scholar 

  • Roncatto MC, Pascholati SF (1998) Alterações na atividade e no perfil eletroforético da peroxidase em folhas de milho (Zea mays) e sorgo (Sorghum bicolor) tratadas com levedura (Saccharomyces cerevisiae). Scientia Agricola 55, 395–402. doi: 10.1590/S0103-90161998000 300007

    Article  CAS  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. The Plant Cell 8, 1809–1819.

    Article  CAS  PubMed  Google Scholar 

  • Saftić-Panković D, Veljović-Jovanović S, Pucarević M, Radovanović N, Mijić A (2006) Phenolic compounds and peroxidases in sunflower near-isogenic lines after downy mildew infection. Helia 29, 33–42. doi: 10.2298/HEL0645033S

    Article  Google Scholar 

  • Stangarlin JR, Pascholati SF, Labate CA (2000) Efeito de Phaeoisariopsis griseola na atividade de ribulose-1,5-bifosfato carboxilase-oxigenase, clorofilase, β-1,3-glucanase e quitinase em cultivares de Phaseolus vulgaris. Fitopatologia Brasileira 25, 59–66.

    CAS  Google Scholar 

  • Teixeira DA, Alfenas AC, Mafia RG, Maffia LA, Ferreira EM (2005) Evidências de Indução de Resistência Sistêmica à Ferrugem do Eucalipto Mediada por Rizobactérias Promotoras do Crescimento de Plantas. Fitopatologia Brasileira 30, 350–356. doi: 10.1590/S0100-41582005000400003

    Google Scholar 

  • Umesha S (2006) Phenylalanine ammonia lyase activity in tomato seedlings and its relationship to bacterial canker disease resistance. Phytoparasitica 34, 68–71. doi: 10.1007/BF02981341

    Article  CAS  Google Scholar 

  • van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology 44, 135–162. doi: 10.1146/annurev.phyto.44.070505.143425

    Article  PubMed  Google Scholar 

  • Wulff NA, Pascholati SF (1999) Partial characterization of sorghum phytoalexin elicitors isolated from Saccharomyces cerevisiae. Fitopatologia Brasileira 24, 428–435.

    Google Scholar 

  • Xavier AA, Alfenas AC, Matsuoka K, Hodges CS (2001) Infection of resistant and susceptible Eucalyptus grandis genotypes by urediniospores of Puccinia psidii. Australasian Plant Pathology 30, 277–281. doi: 10.1071/AP01038

    Article  Google Scholar 

  • Zhao X, She X, Du Y, Liang X (2007) Induction of antiviral resistance and stimulary effect by oligochitosan in tobacco. Pesticide Biochemistry and Physiology 87, 78–84. doi: 10.1016/j.pestbp.2006.06.006

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Pires Boava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boava, L.P., Kuhn, O.J., Pascholati, S.F. et al. Effect of acibenzolar-S-methyl and Saccharomyces cerevisiae on the activation of Eucalyptus defences against rust. Australasian Plant Pathology 38, 594–602 (2009). https://doi.org/10.1071/AP09045

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1071/AP09045

Additional keyword

Navigation