Skip to main content
Log in

Phosphite induces expression of a putative proteophosphoglycan gene in Phytophthora cinnamomi

  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

The phosphate analogue phosphite is widely used to control diseases of plants caused by oomycete pathogens such as those within the genus Phytophthora. Phosphite inhibits zoospore production and growth of P. cinnamomi. However, very little is known about the underlying mechanism of action. In the present study, we grew P. cinnamomi in Ribero’s liquid medium with 0.1 mM phosphate, with and without 5 μg phosphite/mL, and used differential display reverse transcriptase-PCR (DDRT-PCR) to identify P. cinnamomi genes that are transcriptionally repressed or induced by phosphite. By using this technique, four differentially expressed bands were identified. However, quantitative measurement of the amount of mRNA transcript by RT-PCR revealed that only one gene was actually phosphite inducible. On the basis of the homology of the deduced amino acid sequence, this gene encodes a proteophosphoglycan. The remaining three bands did not show differential expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aberton MJ, Wilson BA, Cahill DM (1999) The use of potassium phosphonate to control Phytophthora cinnamomi in native vegetation at Anglesea, Victoria. Australasian Plant Pathology 28, 225–234. doi: 10.1071/AP99037

    Article  Google Scholar 

  • Altschul SF, Madden T, Schäffer A, Zhang J, Zhang Z, Miller W, Lipman D ((1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25, 3389–3402. doi: 10.1093/nar/25.17.3389

    Article  CAS  PubMed  Google Scholar 

  • Barchietto T, Saindrenan P, Bompeix G (1988) Characterization of phosphonate uptake in two Phytophthora spp. and its inhibition by phosphate. Archives of Microbiology 151, 54–58. doi: 10.1007/ BF00444669

    Article  Google Scholar 

  • Barrett SR, Shearer BL, Hardy GES (2004) Phytotoxicity in relation to in planta concentration of the fungicide phosphite in nine Western Australian native species. Australasian Plant Pathology 33, 521–528. doi: 10.1071/ AP04055

    Article  CAS  Google Scholar 

  • Daniel R, Guest D (2006) Defence responses induced by potassium phosphonate in Phytophthora palmivora-challenged Arabidopsis thaliana. Physiological and Molecular Plant Pathology 67, 194–201. doi: 10.1016/j.pmpp.2006.01.003

    Article  Google Scholar 

  • Gaulin E, Jauneau A, Villal F, Rickauer M, Esquerre-Tugaaye M, Bottin A ((2002) The CBEL glycoprotein of Phytophthora parasitica var. nicotianae is involved in cell wall deposition and adhesion to cellulosic substrates. Journal of Cell Science 115, 4565–4575. doi: 10.1242/ jcs.00138

    Article  CAS  PubMed  Google Scholar 

  • Gopfert U, Goehring N, Klein C, Ilg T (1999) Proteophosphoglycans of Leishmania mexicana. Biochemical Journal 344, 787–795. doi: 10.1042/0264-6021:3440787

    Article  CAS  PubMed  Google Scholar 

  • Griffith JM, Smillie RH, Grant BR (1990) Alterations in nucleotide and pyrophosphate levels in Phytophthora palmivora following exposure to the antifungal agent potassium phosphonate (phosphite). Journal of General Microbiology 136, 1258–1291.

    Google Scholar 

  • Griffith JM, Coffey MD, Grant BR (1993) Phosphonate inhibition as a function of phosphate concentration in isolates of Phytophthorapalmivora. Journal of General Microbiology 139, 2109–2116.

    CAS  Google Scholar 

  • Hardham AR ((2005) Phytophthora cinnamomi. Molecular Plant Pathology 6, 589–604. doi: 10.1111/j.1364-3703.2005.00308.x

    Article  CAS  PubMed  Google Scholar 

  • Hardy GEStJ, Barrett S, Shearer BL (2001) The future of phosphite as a fungicide to control the soilborne plant pathogen Phytophthora cinnamomi in natural ecosystems. Australasian Plant Pathology 30, 133–139. doi: 10.1071/AP01012

    Article  Google Scholar 

  • Jackson TJ, Burgess T, Colquhoun I, Hardy GEStJ (2000) Action of the fungicide phosphite on Eucalyptus marginata inoculated with Phytophthora cinnamomi. Plant Pathology 49, 147–154. doi: 10.1046/ j.1365-3059.2000.00422.x

    Article  CAS  Google Scholar 

  • Jorgensen M, Bevort M, Pallisgard N, Hummel R, Hansen R, Rohde M, Strauss M, Leffers H (1997) Differential display of expressed mRNAs. In ‘Fingerprinting methods based on arbitrarily primed PCR’. (Eds MR Micheli, R Bova) pp. 269–281. Springer-Verlag: Heidelberg, Germany)

    Google Scholar 

  • Khatib M, Lafitte C, Esquerre-Tugaye MT, Bottin A, Rickauer M ((2004) The CBEL elicitor of Phytophthora parasitica var. nicotianae activates defence in Arabidopsis thaliana via three different signalling pathways. New Phytologist 162, 501–510. doi: 10.1111/j.1469-8137.2004.01043.x

    Article  CAS  Google Scholar 

  • Klein C, Gopfert U, Goehring N, Stierhof Y, Ilg T (1999) Proteophosphoglycans of Leishmania mexicana. Biochemical Journal 344, 775–786. doi: 10.1042/0264-6021:3440775

    Article  CAS  PubMed  Google Scholar 

  • Liang P, Bauer D, Averboukh L, Warthoe P, Rohrwild M, Muller H, Strauss M, Pardee AB (1995) Analysis of altered gene expression by differential display. Methods in Enzymology 254, 304–321. doi: 10.1016/0076-6879(95)54022-9

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T) (-Delta Delta C) method. Methods (San Diego, Calif.) 25, 402–408.

    CAS  Google Scholar 

  • Logemann J, Schell J, Willmitzer L (1987) Improved method for isolation of RNAfrom plant tissue. Analytical Biochemistry 163, 16–20. doi: 10.1016/0003-2697(87)90086-8

    Article  CAS  PubMed  Google Scholar 

  • Malusa E, Tosi L (2005) Phosphorous acid residues in apples after foliar fertilization: results of field trials. Food Additives and Contaminants 22, 541–548. doi: 10.1080/02652030500135284

    CAS  PubMed  Google Scholar 

  • Martin H, Grant BR, Stehmann C (1998) Inhibition of inorganic pyrophosphatase by phosphonate—a site of action in Phytophthora spp. Pesticide Biochemistry and Physiology 61, 65–77. doi: 10.1006/pest.1998.2353

    Article  CAS  Google Scholar 

  • Mateos FV, Rickauer M, Esquerre-Tugaye M (1997) Cloning and characterization of a cDNA encoding an elicitor of Phytophthora parasitica var. nicotianae that shows cellulose-binding and lectin-like activities. Molecular Plant—Microbe Interactions 10, 1045–1053. doi: 10.1094/MPMI.1997.10.9.1045

    Article  CAS  PubMed  Google Scholar 

  • McDonald AE, Grant BR, Plaxton WC (2001a Phosphite (phosphorous acid): its relevance in the environment and agriculture and influence on plant phosphate starvation response. Journal of Plant Nutrition 24, 1505–1519. doi: 10.1081/PLN-100106017

    Article  CAS  Google Scholar 

  • McDonald AE, Niere JO, Plaxton WC (2001b) Phosphite disrupts the acclimation of Saccharomyces cerevisiae to phosphate starvation. Canadian Journal of Microbiology 47, 969–978. doi: 10.1139/cjm-47-11-969

    Article  CAS  PubMed  Google Scholar 

  • Molina A, Hunt MD, Ryals JA (1998) Impaired fungicide activity in plants blocked in disease resistance signal transduction. The Plant Cell 10, 1903–1914. doi: 10.2307/3870912

    Article  CAS  PubMed  Google Scholar 

  • Nicot N, Hausman JF, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. Journal of Experimental Botany 56, 2907–2914. doi: 10.1093/jxb/eri285

    Article  CAS  PubMed  Google Scholar 

  • Niere JO, DeAngelis G, Grant BR (1994) The effect of phosphonate on the acid-soluble phosphorus components in the genus Phytophthora. Microbiology 140, 1661–1670.

    Article  CAS  Google Scholar 

  • Niere JO, deAngelis GA, Grant JH, McDonnell J, Stringer F, Grant BR (2001) 31PNMR in vivo spectroscopy of Phytophthora palmivora mycelia. In ‘Phytophthora in forests and natural ecosystems’. Albany, Western Australia. (Eds J McComb, GS Hardy, I Tommerup) pp. 182–187. (Centre for Phytophthora Science and Management, Murdoch University: Perth)

    Google Scholar 

  • Perez V, Mamdouh A, Huet J, Pernollet J, Bompeix G (1995) Enhanced secretion of elicitins by Phytophthora fungi exposed to phosphonate. Cryptogamie. Mycologie 16, 191–194.

    Google Scholar 

  • Pilbeam RA, Colquhoun IJ, Shearer B, Hardy GES (2000) Phosphite concentration: its effect on phytotoxicity symptoms and colonisation by Phytophthora cinnamomi in three understorey species of Eucalyptus marginata forest. Australasian Plant Pathology 29, 86–95. doi: 10.1071/AP00016

    Article  Google Scholar 

  • Ponchel F, Toomes C, Bransfield K, Leong FT, Douglas SH, et al. (2003 Real-timePCR based on SYBR-Green I fluorescence: an alternative to the TaqMan assay for a relative quantification of gene rearrangements, gene amplifications and micro gene deletions. BMC Biotechnology 3, 18. doi: 10.1186/1472-6750-3-18

    Article  PubMed  Google Scholar 

  • Rajeevan MS, Ranamukhaarachchi DG, Vernon SD, Unger ER (2001) Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies. Methods (San Diego, Calif.) 25, 443–451.

    CAS  Google Scholar 

  • Ribeiro OK (1978) ‘A source book of the genus Phytophthora.’ (J. Cramer: Vaduz, Liechtenstein)

    Google Scholar 

  • Robold AV, Hardham AR (2005) During attachment Phytophthora spores secrete proteins containing thrombospondin type 1 repeats. Current Genetics 47, 307–315. doi: 10.1007/s00294-004-0559-8

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) ‘Molecular cloning: a laboratory manual.’ 2nd edn. (Cold Spring Harbor Laboratory: Cold, Spring Harbor, NY)

    Google Scholar 

  • Shearer BL, Crane CE, Fairman RG (2004) Phosphite reduces disease extension of a Phytophthora cinnamomi front in Banksia woodland, even after fire. Australasian Plant Pathology 33, 249–254. doi: 10.1071/AP04002

    Article  CAS  Google Scholar 

  • Shearer BL, Crane CE, Barrett S, Cochranev A (2007) Phytophthora cinnamomi invasion, a major threatening process to conservation of flora diversity in the South-West Botanical Province of Western Australia. Australian Journal of Botany 55, 225–238. doi: 10.1071/BT06019

    Article  Google Scholar 

  • Smillie R, Grant B, Guest D (1989) The mode of action of phosphite: evidence for both direct and indirect modes of action on three Phytophthora spp. in plants. Phytopathology 79, 921–926. doi: 10.1094/Phyto-79-921

    Article  CAS  Google Scholar 

  • Smith BJ, Shearer BL, Sivasithamparam K (1997a) Compartmentalization of Phytophthora cinnamomi in stems of highly susceptible Banksia brownii treated with phosphonate. Mycological Research 101, 1101–1107. doi: 10.1017/S0953756297003754

    Article  CAS  Google Scholar 

  • Smith NR, Li A, Aldersley M, High AS, Markham AF, Robinson PA (1997b) Rapid determination of the complexity of cDNA bands extracted from DDRT-PCR polyacrylamide gels. Nucleic Acids Research 25, 3552–3554. doi: 10.1093/nar/25.17.3552

    Article  CAS  PubMed  Google Scholar 

  • Stanley MS, Perry RM, Callow JA (2005) Analysis of express sequence tags from the green algae Ulva linza (Chlorophyta). Journal of Phycology 41, 1219–1226. doi: 10.1111/j.1529-8817.2005.00138.x

    Article  CAS  Google Scholar 

  • Thatcher LF, Anderson JP, Singh KB (2005) Plant defence responses: what have we learnt from Arabidopsis? Functional Plant Biology 32, 1–19. doi: 10.1071/FP04135

    Article  CAS  Google Scholar 

  • Tyler BM (2001) Genetics and genomics of the oomycete host interface. Trends in Genetics 17, 611–614. doi: 10.1016/S0168-9525(01)02517-3

    Article  CAS  PubMed  Google Scholar 

  • Tyler BM, Tripathy S, Zhang XG, Dehal P, Jiang RHY, et al. (2006) Phytophthora genome sequences uncover evolutionary origins and mechanisms of disease. Science 313, 1261–1266. doi: 10.1126/science. 1128796

    Article  CAS  PubMed  Google Scholar 

  • van der Merwe M, Kotze J (1994) Fungicidal action of phosphite in avocado root tips on Phytophthora cinnamomi. South African Avocado Growers Yearbook 17, 38–45.

    Google Scholar 

  • Wilkinson CJ, Holmes JM, Dell B, Tynan KM, McComb JA, Shearer BL, Colquhoun IJ, Hardy GES (2001a) Effect of phosphite on in planta zoospore production of Phytophthora cinnamomi. Plant Pathology 50, 587–593. doi: 10.1046/j.1365-3059.2001.00605.x

    Article  CAS  Google Scholar 

  • Wilkinson CJ, Shearer BL, Jackson TJ, Hardy GES (2001b) Variation in sensitivity of Western Australian isolates of Phytophthora cinnamomi to phosphite in vitro. Plant Pathology 50, 83–89. doi: 10.1046/j.1365-3059.2001.00539.x

    Article  Google Scholar 

  • Wong M (2006) Phosphite induces morphological and molecular changes in Phytophthora species. MPhil Thesis, Murdoch University, Perth.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip A. O’Brien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, MH., McComb, J., Hardy, G.E.S.J. et al. Phosphite induces expression of a putative proteophosphoglycan gene in Phytophthora cinnamomi . Australasian Plant Pathology 38, 235–241 (2009). https://doi.org/10.1071/AP08101

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1071/AP08101

Additional keywords

Navigation