Cu(In,Ga) Se2 (CIGS) thin film solar cells have demonstrated very high efficiencies, but still the role of nanoscale inhomogeneities in CIGS and their impact on the solar cell performance are not yet clearly understood. Due to the polycrystalline structure of CIGS, grain boundaries are very common structural defects that are also accompanied by compositional variations. In this work, we apply valence electron energy loss spectroscopy in scanning transmission electron microscopy to study the local band gap energy at a grain boundary in the CIGS absorber layer. Based on this example, we demonstrate the capabilities of a 2nd generation monochromator that provides a very high energy resolution and allows for directly relating the chemical composition and the band gap energy across the grain boundary. A band gap widening of about 20 meV is observed at the grain boundary. Furthermore, the compositional analysis by core-loss EELS reveals an enrichment of In together with a Cu, Ga and Se depletion at the same area. The experimentally obtained results can therefore be well explained by the presence of a valence band barrier at the grain boundary.

1.
See http://www.solar-frontier.com/eng/news/2015/C051171.html for “Solar frontier achieves world record thin-film solar cell efficiency: 22.3%,” (last accessed December 15,
2015
).
2.
P.-P.
Choi
,
O.
Cojocaru-Mirédin
,
R.
Wuerz
, and
D.
Raabe
,
J. Appl. Phys.
110
,
124513
(
2011
).
3.
D.
Abou-Ras
,
B.
Schaffer
,
M.
Schaffer
,
S. S.
Schmidt
,
R.
Caballero
, and
T.
Unold
,
Phys. Rev. Lett.
108
,
075502
(
2012
).
4.
O.
Cojocaru-Mirédin
,
P.-P.
Choi
,
D.
Abou-Ras
,
S.
Schmidt
,
R.
Caballero
, and
D.
Raabe
,
IEEE J. Photovoltaics
1
,
207
(
2011
).
5.
D.
Keller
,
S.
Buecheler
,
P.
Reinhard
,
F.
Pianezzi
,
D.
Pohl
,
A.
Surrey
,
B.
Rellinghaus
,
R.
Erni
, and
A. N.
Tiwari
,
Microsc. Microanal.
20
,
1246
(
2014
).
6.
A.
Chirilă
,
S.
Buecheler
,
F.
Pianezzi
,
P.
Bloesch
,
C.
Gretener
,
A. R.
Uhl
,
C.
Fella
,
L.
Kranz
,
J.
Perrenoud
,
S.
Seyrling
,
R.
Verma
,
S.
Nishiwaki
,
Y. E.
Romanyuk
,
G.
Bilger
, and
A. N.
Tiwari
,
Nat. Mater.
10
,
857
(
2011
).
7.
A.
Chirilă
,
P.
Reinhard
,
F.
Pianezzi
,
P.
Bloesch
,
A. R.
Uhl
,
C.
Fella
,
L.
Kranz
,
D.
Keller
,
C.
Gretener
,
H.
Hagendorfer
,
D.
Jaeger
,
R.
Erni
,
S.
Nishiwaki
,
S.
Buecheler
, and
A. N.
Tiwari
,
Nat. Mater.
12
,
1107
(
2013
).
8.
S.
Minoura
,
K.
Kodera
,
T.
Maekawa
,
K.
Miyazaki
,
S.
Niki
, and
H.
Fujiwara
,
J. Appl. Phys.
113
,
063505
(
2013
).
9.
S.
Siebentritt
,
M.
Igalson
,
C.
Persson
, and
S.
Lany
,
Prog. Photovoltaics
18
,
390
(
2010
).
10.
T.
Unold
and
C. A.
Kaufmann
, in
Comprehensive Renewable Energy
, edited by
A.
Sayigh
(
Elsevier
,
Oxford
,
2012
), pp.
399
422
.
11.
S.-H.
Han
,
F. S.
Hasoon
,
J. W.
Pankow
,
A. M.
Hermann
, and
D. H.
Levi
,
Appl. Phys. Lett.
87
,
151904
(
2005
).
12.
S.
Minoura
,
T.
Maekawa
,
K.
Kodera
,
A.
Nakane
,
S.
Niki
, and
H.
Fujiwara
,
J. Appl. Phys.
117
,
195703
(
2015
).
13.
S.-H.
Wei
,
S. B.
Zhang
, and
A.
Zunger
,
Appl. Phys. Lett.
72
,
3199
(
1998
).
14.
P. D.
Paulson
,
R. W.
Birkmire
, and
W. N.
Shafarman
,
J. Appl. Phys.
94
,
879
(
2003
).
15.
J. H.
Werner
,
J.
Mattheis
, and
U.
Rau
, in
Thin Solid Films EMRS 2004 Proceedings of Symposium O on Thin Film Chalcogenide Photovoltaic Materials, EMRS 2004 Conference, Strasbourg, France, May 24–28, 2004
(
2005
), Vol. 480–481, p.
399
.
16.
R.
Egerton
,
Electron Energy-Loss Spectroscopy in the Electron Microscope
(
Springer US
,
Boston, MA
,
2011
).
You do not currently have access to this content.