Particle movement in vibration assisted microfluidic systems is significantly affected by time-averaged streaming flows. These flows can demonstrate either particle collection or dispersion characteristics, depending on the parameters used and system specifics. Here we investigate particle collection within streaming flows in vertically actuated open rectangular chambers at frequencies in the range of 100 Hz. Capillary waves, created at the water-air interface under the action of low frequency vibration, generate streaming fields in the liquid bulk. In addition, the spatial variation in the flow field gives rise to particle collection due to inertial effects. In order to understand the interplay between these effects, 2D simulations are employed to understand the first order field induced particle collection, while an experimental study is performed to investigate the effect of the 3D streaming fields on particle motion. By altering the chamber dimensions, two observations are presented: first by taking measures to reduce the strength of the streaming field, particles as small as 50 nm in diameter can be collected. Second, the streaming fields themselves can be used to trap particles, which in conjunction with the collection forces can cause particle separation.

1.
L. A.
Kuznetsova
and
W. T.
Coakley
, “
Applications of ultrasound streaming and radiation force in biosensors
,”
Biosens. Bioelectron.
22
,
1567
1577
(
2007
).
2.
C.
Yi
,
C.-W.
Li
,
S.
Ji
, and
M.
Yang
, “
Microfluidics technology for manipulation and analysis of biological cells
,”
Anal. Chim. Acta
560
,
1
23
(
2006
).
3.
P.
Sajeesh
and
A.
Sen
, “
Particle separation and sorting in microfluidic devices: A review
,”
Microfluid. Nanofluid.
17
,
1
52
(
2014
).
4.
C.
Zhang
,
K.
Khoshmanesh
,
A.
Mitchell
, and
K.
Kalantar-zadeh
, “
Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems
,”
Anal. Bioanal. Chem.
396
,
401
420
(
2010
).
5.
C.
Mio
,
T.
Gong
,
A.
Terray
, and
D. W. M.
Marr
, “
Design of a scanning laser optical trap for multiparticle manipulation
,”
Rev. Sci. Instrum.
71
,
2196
2200
(
2000
).
6.
C.
Quanliang
,
H.
Xiaotao
, and
L.
Liang
, “
Two-dimensional manipulation of magnetic nanoparticles in microfluidic systems
,”
Appl. Phys. Express
6
,
025201
(
2013
).
7.
R.
Jensen
,
I.
Gralinski
, and
A.
Neild
, “
Ultrasonic manipulation of particles in an open fluid film
,”
IEEE Trans. Ultrason., Ferroelectrics Freq. Control
60
,
1964
1970
(
2013
).
8.
S.
Oberti
,
A.
Neild
,
R.
Quach
, and
J.
Dual
, “
The use of acoustic radiation forces to position particles within fluid droplets
,”
Ultrasonics
49
,
47
52
(
2009
).
9.
T.
Kanazaki
and
T.
Okada
, “
Two-dimensional particle separation in coupled acoustic-gravity-flow field vertically by composition and laterally by size
,”
Anal. Chem.
84
,
10750
10755
(
2012
).
10.
Y.
Liu
and
K.-M.
Lim
, “
Particle separation in microfluidics using a switching ultrasonic field
,”
Lab Chip
11
,
3167
3173
(
2011
).
11.
A.
Grinenko
,
C. K.
Ong
,
C. R. P.
Courtney
,
P. D.
Wilcox
, and
B. W.
Drinkwater
, “
Efficient counter-propagating wave acoustic micro-particle manipulation
,”
Appl. Phys. Lett.
101
,
233501
(
2012
).
12.
C. R. P.
Courtney
,
B. W.
Drinkwater
,
C. E. M.
Demore
,
S.
Cochran
,
A.
Grinenko
, and
P. D.
Wilcox
, “
Dexterous manipulation of microparticles using Bessel-function acoustic pressure fields
,”
Appl. Phys. Lett.
102
,
123508
(
2013
).
13.
J.
Greenhall
,
F.
Guevara Vasquez
, and
B.
Raeymaekers
, “
Continuous and unconstrained manipulation of micro-particles using phase-control of bulk acoustic waves
,”
Appl. Phys. Lett.
103
,
074103
(
2013
).
14.
P.
Glynne-Jones
,
R. J.
Boltryk
,
N. R.
Harris
,
A. W. J.
Cranny
, and
M.
Hill
, “
Mode-switching: A new technique for electronically varying the agglomeration position in an acoustic particle manipulator
,”
Ultrasonics
50
,
68
75
(
2010
).
15.
A.
Grinenko
,
P. D.
Wilcox
,
C. R. P.
Courtney
, and
B. W.
Drinkwater
, “
Proof of principle study of ultrasonic particle manipulation by a circular array device
,”
Proc. R. Soc. A
468
,
3571
3586
(
2012
).
16.
M. C.
Jo
and
R.
Guldiken
, “
Particle manipulation by phase-shifting of surface acoustic waves
,”
Sens. Actuators, A
207
,
39
42
(
2014
).
17.
S.
Oberti
,
D.
Moeller
,
A.
Neild
,
J.
Dual
,
F.
Beyeler
,
B.
Nelson
, and
S.
Gutmann
, “
Strategies for single particle manipulation using acoustic and flow fields
,”
Ultrasonics
50
,
247
257
(
2010
).
18.
A.
Neild
,
S.
Oberti
,
G.
Radziwill
, and
J.
Dual
, “
Simultaneous positioning of cells into two-dimensional arrays using ultrasound
,”
Biotechnol. Bioeng.
97
,
1335
1339
(
2007
).
19.
C. D.
Wood
,
J. E.
Cunningham
,
R.
O’Rorke
,
C.
Wälti
,
E. H.
Linfield
,
A. G.
Davies
, and
S. D.
Evans
, “
Formation and manipulation of two-dimensional arrays of micron-scale particles in microfluidic systems by surface acoustic waves
,”
Appl. Phys. Lett.
94
,
054101
(
2009
).
20.
O.
Manneberg
,
J.
Svennebring
,
H. M.
Hertz
, and
M.
Wiklund
, “
Wedge transducer design for two-dimensional ultrasonic manipulation in a microfluidic chip
,”
J. Micromech. Microeng.
18
,
095025
(
2008
).
21.
P. B.
Muller
,
M.
Rossi
,
A. G.
Martin
,
R.
Barnkob
,
P.
Augustsson
,
T.
Laurell
,
C. J.
Kähler
, and
H.
Bruus
, “
Ultrasound-induced acoustophoretic motion of microparticles in three dimensions
,”
Phys. Rev. E
88
,
023006
(
2013
).
22.
O.
Manneberg
,
B.
Vanherberghen
,
J.
Svennebring
,
H. M.
Hertz
,
B.
Önfelt
, and
M.
Wiklund
, “
A three-dimensional ultrasonic cage for characterization of individual cells
,”
Appl. Phys. Lett.
93
,
063901
(
2008
).
23.
S.
Lukaschuk
,
P.
Denissenko
, and
G.
Falkovich
, “
Nodal patterns of floaters in surface waves
,”
Eur. Phys. J.: Spec. Top.
145
,
125
136
(
2007
).
24.
J.
Whitehill
,
A.
Neild
,
T. W.
Ng
, and
M.
Stokes
, “
Collection of suspended particles in a drop using low frequency vibration
,”
Appl. Phys. Lett.
96
,
053501
(
2010
).
25.
P.
Agrawal
,
P. S.
Gandhi
, and
A.
Neild
, “
The mechanics of microparticle collection in an open fluid volume undergoing low frequency horizontal vibration
,”
J. Appl. Phys.
114
,
114904
(
2013
).
26.
W. L. M.
Nyborg
,
Physical Acoustics IIB
(
Academic Press
,
New York
,
1965
), p.
265
.
27.
M.
Gedge
and
M.
Hill
, “
Acoustofluidics 17: Theory and applications of surface acoustic wave devices for particle manipulation
,”
Lab Chip
12
,
2998
3007
(
2012
).
28.
C.
Kotas
,
M.
Yoda
, and
P.
Rogers
, “
Steady streaming flows near spheroids oscillated at multiple frequencies
,”
Exp. Fluids
45
,
295
307
(
2008
).
29.
P.
Tho
,
R.
Manasseh
, and
A.
Ooi
, “
Cavitation microstreaming patterns in single and multiple bubble systems
,”
J. Fluid Mech.
576
,
191
233
(
2007
).
30.
D.
Ahmed
,
X.
Mao
,
J.
Shi
,
B. K.
Juluri
, and
T. J.
Huang
, “
A millisecond micromixer via single-bubble-based acoustic streaming
,”
Lab Chip
9
,
2738
2741
(
2009
).
31.
J.
Collis
,
R.
Manasseh
,
P.
Liovic
,
P.
Tho
,
A.
Ooi
,
K.
Petkovic-Duran
, and
Y.
Zhu
, “
Cavitation microstreaming and stress fields created by microbubbles
,”
Ultrasonics
50
,
273
279
(
2010
), selected papers from ICU 2009.
32.
M.
Ohlin
,
A. E.
Christakou
,
T.
Frisk
,
B.
Önfelt
, and
M.
Wiklund
, “
Influence of acoustic streaming on ultrasonic particle manipulation in a 100-well ring-transducer microplate
,”
J. Micromech. Microeng.
23
,
035008
(
2013
).
33.
R.
Barnkob
,
P.
Augustsson
,
T.
Laurell
, and
H.
Bruus
, “
Acoustic radiation- and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane
,”
Phys. Rev. E
86
,
056307
(
2012
).
34.
A. L.
Bernassau
,
P.
Glynne-Jones
,
F.
Gesellchen
,
M.
Riehle
,
M.
Hill
, and
D. R. S.
Cumming
, “
Controlling acoustic streaming in an ultrasonic heptagonal tweezers with application to cell manipulation
,”
Ultrasonics
54
,
268
274
(
2014
).
35.
J.
Nam
,
Y.
Lee
, and
S.
Shin
, “
Size-dependent microparticles separation through standing surface acoustic waves
,”
Microfluid. Nanofluid.
11
,
317
326
(
2011
).
36.
P.
Rogers
,
I.
Gralinski
,
C.
Galtry
, and
A.
Neild
, “
Selective particle and cell clustering at airliquid interfaces within ultrasonic microfluidic systems
,”
Microfluid. Nanofluid.
14
,
469
477
(
2013
).
37.
C.
Devendran
,
I.
Gralinski
, and
A.
Neild
, “
Separation of particles using acoustic streaming and radiation forces in an open microfluidic channel
,”
Microfluid. Nanofluid.
17
,
879
890
(
2014
).
38.
K.
Chong
,
S. D.
Kelly
,
S.
Smith
, and
J. D.
Eldredge
, “
Inertial particle trapping in viscous streaming
,”
Phys. Fluids
25
,
033602
(
2013
).
39.
Z.
Hong
,
J.
Zhang
, and
B. W.
Drinkwater
, “
Observation of orbital angular momentum transfer from Bessel-shaped acoustic vortices to diphasic liquid-microparticle mixtures
,”
Phys. Rev. Lett.
114
,
214301
(
2015
).
40.
A.
Anhäuser
,
R.
Wunenburger
, and
E.
Brasselet
, “
Acoustic rotational manipulation using orbital angular momentum transfer
,”
Phys. Rev. Lett.
109
,
034301
(
2012
).
41.
T. A.
House
,
V. H.
Lieu
, and
D. T.
Schwartz
, “
A model for inertial particle trapping locations in hydrodynamic tweezers arrays
,”
J. Micromech. Microeng.
24
,
045019
(
2014
).
42.
P.
Rogers
and
A.
Neild
, “
Selective particle trapping using an oscillating microbubble
,”
Lab Chip
11
,
3710
3715
(
2011
).
43.
M. V.
Patel
,
I. A.
Nanayakkara
,
M. G.
Simon
, and
A. P.
Lee
, “
Cavity-induced microstreaming for simultaneous on-chip pumping and size-based separation of cells and particles
,”
Lab Chip
14
,
3860
3872
(
2014
).
44.
H. V.
Phan
,
M.
Şeşen
,
T.
Alan
, and
A.
Neild
, “
Single line particle focusing using a vibrating bubble
,”
Appl. Phys. Lett.
105
,
193507
(
2014
).
45.
D.
Klotsa
,
M. R.
Swift
,
R. M.
Bowley
, and
P. J.
King
, “
Interaction of spheres in oscillatory fluid flows
,”
Phys. Rev. E
76
,
056314
(
2007
).
46.
D.
Klotsa
,
M. R.
Swift
,
R. M.
Bowley
, and
P. J.
King
, “
Chain formation of spheres in oscillatory fluid flows
,”
Phys. Rev. E
79
,
021302
(
2009
).
47.
F.
Zoueshtiagh
,
P. J.
Thomas
,
V.
Thomy
, and
A.
Merlen
, “
Micrometric granular ripple patterns in a capillary tube
,”
Phys. Rev. Lett.
100
,
054501
(
2008
).
48.
J. D.
Whitehill
,
I.
Gralinski
,
D.
Joiner
, and
A.
Neild
, “
Nanoparticle manipulation within a microscale acoustofluidic droplet
,”
J. Nanopart. Res.
14
,
1
11
(
2012
).
49.
P.
Agrawal
,
P. S.
Gandhi
, and
A.
Neild
, “
Microparticle response to two-dimensional streaming flows in rectangular chambers undergoing low-frequency horizontal vibrations
,”
Phys. Rev. Appl.
2
,
064008
(
2014
).
50.
R.
Clift
,
J. R.
Grace
, and
M. E.
Weber
,
Bubbles, Drops and Particles
(
Academic Press
,
New York
,
1978
).
51.
J. F.
Richardson
,
J. H.
Harker
, and
J. R.
Backhurst
,
Particle Technology and Separation Processes
(
Butterworth Heinemann
,
Woburn, MA
,
2002
), p.
153
.
52.
R. G.
Cox
, “
Inertial and viscous effects on dynamic contact angles
,”
J. Fluid Mech.
357
,
249
278
(
1998
).
53.
B. A.
Puthenveettil
and
A. J.
Hopfinger
, “
Evolution and breaking of parametrically forced capillary waves in a circular cylinder
,”
J. Fluid Mech.
633
,
355
379
(
2009
).
54.
Lord
Rayleigh
, “
On the circulation of air observed in Kundt’s tubes, and on some allied acoustical problems
,”
Philos. Trans. R. Soc. London
175
,
1
21
(
1884
).
55.
P.
Agrawal
,
P. S.
Gandhi
, and
A.
Neild
, “
Quantification and comparison of low frequency microparticle collection mechanism in an open rectangular chamber
,”
J. Appl. Phys.
115
,
174505
(
2014
).
56.
P.
Agrawal
,
P. S.
Gandhi
, and
A.
Neild
, “
Microparticle trapping in streaming flows in open rectangular chambers undergoing low frequency vertical vibrations
,” in
ASME 2014 International Mechanical Engineering Congress and Exposition
(
American Society of Mechanical Engineers
,
2014
), p.
V010T13A044
.
You do not currently have access to this content.