Visible light communication has been widely investigated due to its larger bandwidth and higher bit rate, and it can combine with the indoor illumination system that makes it more convenient to carry out. Receiving and processing the visible light signal on chip request for nanophotonics devices performing well. However, conventional optical device cannot be used for light-on-chip integration at subwavelength dimensions due to the diffraction limit. Herein, we propose a design of Si-based nanoplasmonic structure as an antenna and reception amplifier for visible light communication based on the interaction between Si nanoparticle and Au nanorod. This device integrates the unique scattering property of high-refractive index dielectric Si nanoparticles, whose scattering spectrum is dependent on the particle size, with the localized surface plasmon resonance of Au nanorod. We calculated the spectra collected by plane detector and near field distribution of nanostructure, and theoretically demonstrate that the proposed device can act as good receiver, amplifier and superlens during the visible light signal receiving and processing. Besides, unlike some other designs of nanoantenna devices focused less on how to detect the signals, our hybrid nanoantenna can realize the transfer between the scattering source and the detector effectively by Au nanorod waveguides. These findings suggest that the designed nanoplasmonic structure is expected to be used in on-chip nanophotonics as antenna, spectral splitter and demultiplexer for visible light communication.

1.
R.
Keil
,
M.
Heinrich
,
F.
Dreisow
,
T.
Pertsch
,
A.
Tünnermann
,
S.
Nolte
,
D. N.
Christodoulides
, and
A.
Szameit
,
Sci. Rep.
1
,
94
(
2011
).
2.
Q.
Hu
,
D. H.
Xu
,
Y.
Zhou
,
R. W.
Peng
,
R. H.
Fan
,
N. X.
Fang
,
Q. J.
Wang
,
X. R.
Huang
, and
M.
Wang
,
Sci. Rep.
3
,
3095
(
2013
).
3.
C. S.
Vikram
and
H. J.
Caulfield
,
Opt. Eng.
44
,
115201
(
2005
).
4.
T.
Gys
,
C.
Ambrosio
,
H.
Leutz
,
D.
Piedigrossi
, and
D.
Puertolas
,
Nucl. Instrum. Methods: Phys. Res. A
355
,
386
(
1995
).
5.
K. A.
Willets
and
R. P.
Van Duyne
,
Annu. Rev. Phys. Chem.
58
,
267
(
2007
).
6.
S.
Kawata
,
A.
Ono
, and
P.
Verma
,
Nat. Photonics
2
,
438
(
2008
).
7.
A.
Ono
,
J.
Kato
, and
S.
Kawata
,
Phys. Rev. Lett.
95
,
267407
(
2005
).
8.
H.
Ditlbacher
,
A.
Hohenau
,
D.
Wagner
,
U.
Kreibig
,
M.
Rogers
,
F.
Hofer
,
F. R.
Aussenegg
, and
J. R.
Krenn
,
Phys. Rev. Lett.
95
,
257403
(
2005
).
9.
G. V.
Naik
,
V. M.
Shalaev
, and
A.
Boltasseva
,
Adv. Mater.
25
,
3264
(
2013
).
10.
A. B.
Evlyukhin
,
S. M.
Novikov
,
U.
Zywietz
,
R. L.
Eriksen
,
C.
Reinhardt
,
S. I.
Bozhevolnyi
, and
B. N.
Chichkov
,
Nano. Lett.
12
,
3749
(
2012
).
11.
A. G.
Etxarri
,
R. G.
Medina
,
L. S. F.
Perez
,
C.
Lopez
,
L.
Chantada
,
F.
Scheffold
,
J.
Aizpurua
,
M. N.
Vesperinas
, and
J. J.
Saenz
,
Opt. Express
19
,
4815
(
2011
).
12.
A. I.
Kuznetsov
,
A. E.
Miroshnichenko
,
Y. H.
Fu
,
J. B.
Zhang
, and
B.
Luk'yanchuk
,
Sci. Rep.
2
,
492
(
2012
).
13.
U.
Zywietz
,
A. B.
Evlyukhin
,
C.
Reinhardt
, and
B. N.
Chichkov
,
Nat. Commun.
5
,
3402
(
2014
).
14.
Y. H.
Fu
,
A. I.
Kuznetsov
,
A. E.
Miroshnichenko
,
Y. F.
Yu
, and
B.
Luk'yanchuk
,
Nat. Commun.
4
,
1527
(
2013
).
15.
W.
Liu
,
A. E.
Miroshnichenko
,
D. N.
Neshev
, and
Y. S.
Kivshar
,
ACS Nano
6
,
5489
(
2012
).
16.
A. E.
Krasnok
,
A. E.
Miroshnichenko
,
P. A.
Belov
, and
Y. S.
Kivshar
,
Opt. Express
20
,
20599
(
2012
).
17.
H. J.
Chen
,
L.
Shao
,
Y. C.
Man
,
C. M.
Zhao
,
J. F.
Wang
, and
B. C.
Yang
,
Small
8
,
1503
(
2012
).
18.
H. Y.
Lin
,
Y. F.
Chen
,
J. G.
Wu
,
D. I.
Wang
, and
C. C.
Chen
,
Appl. Phys. Lett.
88
,
161911
(
2006
).
19.
L.
Zhang
,
D. A.
Blom
, and
H.
Wang
,
Chem. Mater.
23
,
4587
(
2011
).
20.
H. J.
Huang
,
C. P.
Yu
,
H. C.
Chang
,
K. P.
Chiu
,
H. M.
Chen
,
R. S.
Liu
, and
D. P.
Tsai
,
Opt. Express
15
,
7132
(
2007
).
21.
Y. F.
Chau
,
M. W.
Chen
, and
D. P.
Tsai
,
Appl. Opt.
48
,
617
(
2009
).
22.
H. J.
Chen
,
L.
Shao
,
Q.
Li
, and
J. F.
Wang
,
Chem. Soc. Rev.
42
,
2679
(
2013
).
23.
D. E.
Gomez
,
K. C.
Vernon
,
P.
Mulvaney
, and
T. J.
Davis
,
Nano Lett.
10
,
274
(
2010
).
24.
B. J.
Lawrie
,
K. W.
Kim
,
D. P.
Norton
, and
R. F.
Haglund
, Jr.
,
Nano Lett.
12
,
6152
(
2012
).
25.
A. E.
Schlather
,
N.
Large
,
A. S.
Urban
,
P.
Nordlander
, and
N. J.
Halas
,
Nano Lett.
13
,
3281
(
2013
).
26.
P.
Vasa
,
R.
Pomraenke
,
S.
Schwieger
,
Y. I.
Mazur
,
V.
Kunets
,
P.
Srinivasan
,
E.
Johnson
,
J. E.
Kihm
,
D. S.
Kim
,
E.
Runge
,
G.
Salamo
, and
C.
Lienau
,
Phys. Rev. Lett.
101
,
116801
(
2008
).
27.
P.
Nordlander
and
E.
Prodan
,
Nano Lett.
4
,
2209
(
2004
).
28.
Z. Y.
Fang
,
J. Y.
Cai
,
Z. B.
Yan
,
P.
Nordlander
,
N. J.
Halas
, and
X.
Zhu
,
Nano Lett.
11
,
4475
(
2011
).
29.
E.
Prodan
,
C.
Radloff
,
N. J.
Halas
, and
P.
Nordlander
,
Science
302
,
419
(
2003
).
30.
A.
Artar
,
A. A.
Yanik
, and
H.
Altug
,
Nano Lett.
11
,
3694
(
2011
).
31.
L.
Shao
,
C. H.
Fang
,
H. J.
Chen
,
Y. C.
Man
,
J. F.
Wang
, and
H. Q.
Lin
,
Nano Lett.
12
,
1424
(
2012
).
32.
S.
Sheikhokeslami
,
Y.
Jun
,
P. K.
Jain
, and
A. P.
Alivisatos
,
Nano Lett.
10
,
2655
(
2010
).
You do not currently have access to this content.