A large-scale simulation of aerosol nucleation and growth in a turbulent mixing layer is performed and analyzed with the aim of elucidating the key processes involved. A cold gaseous stream is mixed with a hot stream of vapor, nanometer sized droplets nucleate as the vapor becomes supersaturated, and subsequently grow as more vapor condenses on their surface. All length and time scales of fluid motion and mixing are resolved and the quadrature method of moments is used to describe the dynamics of the condensing, non-inertial droplets. The results show that a region of high nucleation rate is located near the cold, dry stream, while particles undergo intense growth via condensation on the hot, humid vapor side. Supersaturation and residence times are such that number densities are low and neither coagulation nor vapor scavenging due to condensation are significant. The difference in Schmidt numbers of aerosol particles (approximated as infinity) and temperature and vapor (near unity) causes a drift of the aerosol particles in scalar space and contributes to a large scatter in the conditional statistics of aerosol quantities. The spatial distribution of the aerosol reveals high volume fraction on the hot side of the mixing layer. This distribution is due to drift against the mean and is related to turbulent mixing, which displaces particles from the nucleation region (cold side) into the growth region (hot side). Such a mechanism is absent in laminar flows and is a distinct feature of turbulent condensing aerosols.

1.
H. R.
Pruppacher
and
J. D.
Klett
,
Microphysics of Clouds and Precipitation
(
Springer
,
2010
), Vol.
18
.
2.
E.
Bodenschatz
,
S. P.
Malinowski
,
R. A.
Shaw
, and
F.
Stratmann
, “
Can we understand clouds without turbulence?
,”
Science
327
(
5968
),
970
971
(
2010
).
3.
P. H.
McMurry
, “
A review of atmospheric aerosol measurements
,”
Atmos. Environ.
34
(
12
),
1959
1999
(
2000
).
4.
T. T.
Kodas
and
M. J.
Hampden-Smith
,
Aerosol Processing of Materials
(
Wiley-VCH
,
New York
,
1998
).
5.
G. S.
Springer
, “
Homogeneous nucleation
,” in
Advances in Heat Transfer
, edited by
T. F.
Irvine
and
J. P.
Harnett
(
Academic Press
,
New York
,
1978
), Vol.
14
, pp.
281
346
.
6.
C.
Clement
, “
Aerosol formation from heat and mass transfer in vapour-gas mixtures
,”
Proc. R. Soc. London, Ser. A
398
(
1815
),
307
339
(
1985
).
7.
H. V.
Nguyen
,
K.
Okuyama
,
T.
Mimura
,
Y.
Kousaka
,
R. C.
Flagan
, and
J. H.
Seinfeld
, “
Homogeneous and heterogeneous nucleation in a laminar flow aerosol generator
,”
J. Colloid Interface Sci.
119
(
2
),
491
504
(
1987
).
8.
A. J.
Pesthy
,
R. C.
Flagan
, and
J. H.
Seinfeld
, “
Theory of aerosol formation and growth in laminar flow
,”
J. Colloid Interface Sci.
91
(
2
),
525
545
(
1983
).
9.
J.
Brock
,
P.
Kuhn
, and
D.
Zehavi
, “
Condensation aerosol formation and growth in a laminar coaxial jet: Experimental
,”
J. Aerosol Sci.
17
(
1
),
11
22
(
1986
).
10.
M.
Anisimov
and
A.
Cherevko
, “
Gas-flow diffusion chamber for vapour nucleation studies. Relations between nucleation rate, critical nucleus size and entropy of transition from a metastable into a stable state
,”
J. Aerosol Sci.
16
(
2
),
97
107
(
1985
).
11.
U.
Frisch
,
Turbulence: The Legacy of AN Kolmogorov
(
Cambridge University Press
,
1995
).
12.
K. A.
Kusters
and
S. E.
Pratsinis
, “
Strategies for control of ceramic powder synthesis by gas-to-particle conversion
,”
Powder Technol.
82
(
1
),
79
91
(
1995
).
13.
S.
Friedlander
,
R.
Windeler
, and
A.
Weber
, “
Ultrafine particle formation by aerosol processes in turbulent jets: mechanisms and scale-up
,”
Nanostruct. Mater.
4
(
5
),
521
528
(
1994
).
14.
T. K.
Lesniewski
, “
Particle nucleation and growth in turbulent jets
,” Ph.D. thesis (
University of California
, Los Angeles,
1997
).
15.
T. K.
Lesniewski
and
S. K.
Friedlander
, “
Particle nucleation and growth in a free turbulent jet
,”
Proc. R. Soc. London, Ser. A
454
,
2477
2504
(
1998
).
16.
A. G.
Amelin
, “
Generation of supersaturated vapor and aerosol under mixing of the vapor containing gases at different temperatures
,”
Kolloid. Zhu.
10
,
169
176
(
1948
).
17.
W.
Higuchi
and
C.
O'Konski
, “
A test of the Becker-Döring theory of nucleation kinetics
,”
J. Colloid Sci.
15
(
1
),
14
49
(
1960
).
18.
G. M.
Hidy
and
S. K.
Friedlander
, “
Vapor condensation in the mixing zone of a jet
,”
AIChE J.
10
(
1
),
115
124
(
1964
).
19.
S.
Friedlander
, “
On the particle size spectrum of a condensing vapor
,”
Phys. Fluids
3
,
693
(
1960
).
20.
T. K.
Lesniewski
and
S. K.
Friedlander
, “
The effect of turbulence on rates of particle formation by homogeneous nucleation
,”
Aerosol Sci. Technol.
23
,
174
182
(
1995
).
21.
F.
Gelbard
,
Y.
Tambour
, and
J. H.
Seinfeld
, “
Sectional representations for simulating aerosol dynamics
,”
J. Colloid Interface Sci.
76
(
2
),
541
556
(
1980
).
22.
S.
Das
and
S. C.
Garrick
, “
The effects of turbulence on nanoparticle growth in turbulent reacting jets
,”
Phys. Fluids
22
,
103303
(
2010
).
23.
A. J.
Fager
,
J.
Liu
, and
S. C.
Garrick
, “
Hybrid simulations of metal particle nucleation: A priori and a posteriori analyses of the effects of unresolved scalar interactions on nanoparticle nucleation
,”
Phys. Fluids
24
(
7
),
075110
(
2012
).
24.
N.
Murfield
and
S.
Garrick
, “
The effects of unresolved scalar fluctuations during homogeneous nucleation
,”
Aerosol Sci. Technol.
47
(
7
),
806
817
(
2013
).
25.
N.
Murfield
,
J.
Pyykönen
,
J.
Jokiniemi
, and
S.
Garrick
, “
The structure of nanoparticle nucleation in planar jets
,”
J. Aerosol Sci.
62
,
1
14
(
2013
).
26.
P.
Dimotakis
, “
The mixing transition in turbulent flows
,”
J. Fluid Mech.
409
,
69
98
(
2000
).
27.
A.
Attili
and
F.
Bisetti
, “
Statistics and scaling of turbulence in a spatially developing mixing layer at Reλ = 250
,”
Phys. Fluids
24
,
035109
(
2012
).
28.
A.
Attili
and
F.
Bisetti
, “
Fluctuations of a passive scalar in a turbulent mixing layer
,”
Phys. Rev. E
88
,
033013
(
2013
).
29.
M. M.
Rogers
and
R. D.
Moser
, “
Direct simulation of a self-similar turbulent mixing layer
,”
Phys. Fluids
6
,
903
(
1994
).
30.
J.
Bell
and
R.
Mehta
, “
Development of a two-stream mixing layer from tripped and untripped boundary layers
,”
AIAA J.
28
(
12
),
2034
2042
(
1990
).
31.
R.
McGraw
, “
Description of aerosol dynamics by the quadrature method of moments
,”
Aerosol Sci. Technol.
27
(
2
),
255
265
(
1997
).
32.
D. L.
Marchisio
,
R. D.
Vigil
, and
R. O.
Fox
, “
Quadrature method of moments for aggregation-breakage processes
,”
J. Colloid Interface Sci.
258
,
322
334
(
2003
).
33.
D.
Gillespie
, “
The stochastic coalescence model for cloud droplet growth
,”
J. Atmos. Sci.
29
,
1496
1510
(
1972
).
34.
M.
Goodson
and
M.
Kraft
, “
An efficient stochastic algorithm for simulating nano-particle dynamics
,”
J. Comput. Phys.
183
,
210
232
(
2002
).
35.
A.
Attili
and
F.
Bisetti
, “
Application of a robust and efficient Lagrangian particle scheme for the evolution of soot statistical moments in turbulent flames
,”
Comput. Fluids
84
,
164
175
(
2013
).
36.
D. L.
Wright
 Jr.
, “
Numerical advection of moments of the particle size distribution in Eulerian models
,”
J. Aerosol Sci.
38
,
352
369
(
2007
).
37.
F.
Bisetti
,
G.
Blanquart
,
M. E.
Mueller
, and
H.
Pitsch
, “
On the formation and early evolution of soot in turbulent nonpremixed flames
,”
Combust. Flame
159
,
317
335
(
2012
).
38.
A.
Attili
,
F.
Bisetti
,
M. E.
Mueller
, and
H.
Pitsch
, “
Formation, growth, and transport of soot in a three-dimensional turbulent non-premixed jet flame
,”
Combust. Flame
161
,
1849
1865
(
2014
).
39.
M. A.
Ol'shanskii
and
V. M.
Staroverov
, “
On simulation of outflow boundary conditions in finite difference calculations for incompressible fluid
,”
Int. J. Numer. Methods Fluid
33
(
4
),
499
534
(
2000
).
40.
S. K.
Friedlander
,
Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics
, 2nd ed. (
Oxford University Press
,
New York
,
2000
).
41.
S. E.
Pratsinis
, “
Simultaneous nucleation, condensation, and coagulation in aerosol reactors
,”
J. Colloid Interface Sci.
124
(
2
),
416
427
(
1988
).
42.
M.
Frenklach
, “
Method of moments with interpolative closure
,”
Chem. Eng. Sci.
57
,
2229
2239
(
2002
).
43.
R.
Becker
and
W.
Döring
, “
Kinetische Behandlung der Keimbildung in übersättigten Dämpfern
,”
Ann. Phys. (Leipzig)
416
,
719
752
(
1935
).
44.
K.
Okuyama
,
Y.
Kousaka
,
D. R.
Warren
,
R. C.
Flagan
, and
J. H.
Seinfeld
, “
Homogeneous nucleation by continuous mixing of high-temperature vapor with room temperature gas
,”
Aerosol Sci. Technol.
6
,
15
27
(
1987
).
45.
S.
Jennings
, “
The mean free path in air
,”
J. Aerosol Sci.
19
(
2
),
159
166
(
1988
).
46.
S. K.
Loyalka
and
J. W.
Park
, “
Aerosol growth by condensation: A generalization of Mason's formula
,”
J. Colloid Interface Sci.
125
(
2
),
712
716
(
1988
).
47.
S.
Park
,
K.
Lee
,
E.
Otto
, and
H.
Fissan
, “
The log-normal size distribution theory of Brownian aerosol coagulation for the entire particle size range: Part I–analytical solution using the harmonic mean coagulation kernel
,”
J. Aerosol Sci.
30
(
1
),
3
16
(
1999
).
48.
M. Z.
Yu
,
J. Z.
Lin
,
H. H.
Jin
, and
Y.
Jiang
, “
The verification of the Taylor-expansion moment method for the nanoparticle coagulation in the entire size regime due to Brownian motion
,”
J. Nanopart. Res.
13
,
2007
2020
(
2011
).
49.
O.
Desjardins
,
G.
Blanquart
,
G.
Balarac
, and
H.
Pitsch
, “
High order conservative finite difference scheme for variable density low Mach number turbulent flows
,”
J. Comput. Phys.
227
(
15
),
7125
7159
(
2008
).
50.
J.
Kim
and
P.
Moin
, “
Application of a fractional-step method to incompressible Navier-Stokes equations
,”
J. Comput. Phys.
59
(
2
),
308
323
(
1985
).
51.
X.-D.
Liu
,
S.
Osher
, and
T.
Chan
, “
Weighted essentially non-oscillatory schemes
,”
J. Comput. Phys.
115
,
200
212
(
1994
).
52.
R.
Falgout
,
J.
Jones
, and
U.
Yang
, “
The design and implementation of Hypre, a library of parallel high performance preconditioners
,” in
Numerical Solution of Partial Differential Equations on Parallel Computers
, edited by
A. M.
Bruaset
and
A.
Tveito
(
Springer
,
2006
), pp.
267
294
.
53.
D. L.
Marchisio
and
R. O.
Fox
, “
Solution of population balance equations using the direct quadrature method of moments
,”
J. Aerosol Sci.
36
,
43
73
(
2005
).
54.
J. A.
Shohat
and
J. D.
Tamarkin
,
The Problem of Moments
(
American Mathematical Society
,
Providence, RI
,
1970
).
55.
R.
Hockney
and
J.
Eastwood
,
Computer Simulation Using Particles
(
Institute of Physics
,
1992
).
56.
R.
Gingold
and
J.
Monaghan
, “
Smoothed particle hydrodynamics-theory and application to non-spherical stars
,”
Mon. Not. R. Astron. Soc.
181
,
375
389
(
1977
).
57.
A.
Leonard
, “
Vortex methods for flow simulation
,”
J. Comput. Phys.
37
(
3
),
289
335
(
1980
).
58.
P.
Koumoutsakos
, “
Multiscale flow simulations using particles
,”
Annu. Rev. Fluid Mech.
37
,
457
487
(
2005
).
59.
G.
Strang
, “
On the construction and comparison of difference schemes
,”
SIAM J. Numer. Anal.
5
(
3
),
506
517
(
1968
).
60.
E.
Hairer
,
S. P.
Nørsett
, and
G.
Wanner
,
Solving Ordinary Differential Equations I. Nonstiff Problems
, 2nd ed.,
Springer Series in Computational Mathematics
(
Springer-Verlag
,
1993
).
61.
J. B.
Lagaert
,
G.
Balarac
, and
G. H.
Cottet
, “
Hybrid spectral-particle method for the turbulent transport of a passive scalar
,”
J. Comput. Phys.
260
,
127
142
(
2014
).
62.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
2000
).
63.
K.
Zhou
and
T. L.
Chan
, “
Simulation of homogeneous particle nucleation in a free turbulent jet
,”
Aerosol Sci. Technol.
45
(
8
),
973
987
(
2011
).
64.
S.
Rigopoulos
, “
Population balance modelling of polydispersed particles in reactive flows
,”
Prog. Energy Combust. Sci.
36
(
4
),
412
443
(
2010
).
65.
A. Y.
Klimenko
and
R. W.
Bilger
, “
Conditional moment closure for turbulent combustion
,”
Prog. Energy Combust. Sci.
25
(
6
),
595
687
(
1999
).
66.
N.
Peters
,
Turbulent Combustion
(
Cambridge University Press
,
2000
).
67.
H.
Pitsch
, “
Large-eddy simulation of turbulent combustion
,”
Annu. Rev. Fluid Mech.
38
,
453
482
(
2006
).
68.
F.
Bisetti
,
A.
Attili
, and
H.
Pitsch
, “
Advancing predictive models for particulate formation in turbulent flames via massively parallel direct numerical simulations
,”
Phil. Trans. R. Soc. A
372
,
20130324
(
2014
).
69.
A.
Attili
,
F.
Bisetti
,
M. E.
Mueller
, and
H.
Pitsch
, “
Damköhler number effects on soot formation and growth in turbulent nonpremixed flames
,”
Proc. Combust. Inst.
35
(published online,
2014
).
You do not currently have access to this content.