Experimental and theoretical results of the study of MnFeAsyP1−y (0.15 ≤ y ≤ 0.66) and Mn2−xFexAs0.5P0.5 (0.5 ≤ x ≤ 1.0) systems were analyzed in order to determine the main factors responsible for the mechanism by which antiferromagnetic phase is formed in each of the two systems. It is shown that in the case of cation substitution in the Mn2−xFexAs0.5P0.5 system the main contribution to the mechanism of changing the magnetic ordering phase type is due to a considerable change of electron filling of the magnetically active d-band. As for the MnFeAsyP1−y system with anion substitution, destabilization of the ferromagnetic phase and formation of the antiferromagnetic phase with decreasing As concentration may be due to the changes in the density of electronic states because of a considerable reduction of the unit cell volume.

1.
O.
Tegus
,
E.
Bruck
,
K. H. J.
Buschow
,
F. R.
de Boer
,
Nature
415
,
150
(
2002
).
2.
N. A.
de Oliveira
and
P. J.
von Ranke
,
J. Phys.: Condens. Matter
17
,
3325
(
2005
).
3.
A. V.
Golovchan
and
I. F.
Gribanov
,
Fiz. Nizk. Temp.
34
,
1177
(
2008
)
A. V.
Golovchan
and
I. F.
Gribanov
, [
Low Temp. Phys.
34
,
930
(
2008
)].
4.
V. I.
Val’kov
,
D. V.
Varyukhin
, and
A. V.
Golovchan
,
Fiz. Nizk. Temp.
34
,
536
(
2008
)
V. I.
Val’kov
,
D. V.
Varyukhin
, and
A. V.
Golovchan
, [
Low Temp. Phys.
34
,
427
(
2008
)].
5.
V. I.
Val’kov
,
D. V.
Varyukhin
,
A. V.
Golovchan
,
I. F.
Gribanov
,
A. P.
Sivachenko
,
V. I.
Kamenev
, and
B. M.
Todris
,
Fiz. Nizk. Temp.
34
,
927
(
2008
)
V. I.
Val’kov
,
D. V.
Varyukhin
,
A. V.
Golovchan
,
I. F.
Gribanov
,
A. P.
Sivachenko
,
V. I.
Kamenev
, and
B. M.
Todris
, [
Low Temp. Phys.
34
,
734
(
2008
)].
6.
R.
Zach
,
M.
Bacmann
,
D.
Fruchart
,
P.
Wolfers
,
R.
Fruchart
,
M.
Guillot
,
S.
Kaprzyk
,
S.
Niziol
, and
J.
Tobola
,
J. Alloys Compd.
262
,
508
(
1997
).
7.
J.
Tobola
,
M.
Bacmann
,
D.
Fruchart
,
S.
Kaprzyk
,
A.
Koumina
,
S.
Niziol
,
J.-L.
Soubeyroux
,
P.
Wolfers
, and
R.
Zach
,
JMMM
157
,
708
(
1996
).
8.
G. D.
Samolyuk
and
V. P.
Antropov
,
J. Appl. Phys.
93
,
6882
(
2003
).
9.
M.
Bacman
,
J.-L.
Soubeyroux
,
R.
Darrett
,
D.
Fruchart
,
R.
Zach
,
S.
Niziol
, and
R.
Fruchart
,
JMMM
134
,
59
(
1994
).
10.
R.
Zach
,
M.
Guillot
,
J. C.
Picoche
, and
R.
Fruchart
,
IEEE Trans. Magn.
29
,
3252
(
1993
).
11.
O.
Tegus
, “
Novel Materials for Magnetic Refrigeration
,” Ph.D. Thesis (
Amsterdam
,
2003
).
12.
R.
Zach
,
M.
Guillot
, and
R.
Fruchart
,
JMMM
89
,
221
(
1990
).
13.
R.
Zach
,
M.
Guillot
,
J. C.
Picoche
, and
R.
Fruchart
,
J. Magn. Magn. Mater.
140
,
1541
(
1995
).
14.
The Munich SPR-KKR package, version 3.6,
H.
Ebert
 et al, http://olymp.cup.uni-muenchen.de/ak/ebert/SPRKKR;
H.
Ebert
, “
Fully Relativistic Band Structure Calculations for Magnetic Solids—Formalism and Application
,” in
Electronic Structure and Physical Properties of Solids
, edited by
H.
Dreysse
,
Lecture Notes in Physics
(
Springer
,
Berlin
,
2000
), Vol.
535
, p.
191
.
15.
S. H
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
16.
A.
Koumina
,
M.
Bacmann
,
D.
Fruchart
,
M.
Mesnaoui
, and
P.
Wolfers
,
Moroccan J. Cond. Matter
5
,
117
(
2004
).
17.
E.
Bruck
,
J.
Kamarad
,
V.
Sechovsky
,
Z.
Arnold
,
O.
Tegus
, and
F. R.
de Boer
,
JMMM
310
,
e1008
(
2007
).
18.
I. F.
Gribanov
,
A. V.
Golovchan
,
D. V.
Varyukhin
,
V. I.
Val’kov
,
V. I.
Kamenev
,
A. P.
Sivachenko
,
S. L.
Sidorov
, and
V. I.
Mityuk
,
Fiz. Nizk. Temp.
35
,
1004
(
2009
)
I. F.
Gribanov
,
A. V.
Golovchan
,
D. V.
Varyukhin
,
V. I.
Val’kov
,
V. I.
Kamenev
,
A. P.
Sivachenko
,
S. L.
Sidorov
, and
V. I.
Mityuk
, [
Low Temp. Phys.
35
,
786
(
2009
)].
You do not currently have access to this content.