We consider an osmotic equilibrium between bulk solutions of polyelectrolyte bounded by semi-permeable membranes and separated by a thin film of salt-free liquid. Although the membranes are neutral, the counter-ions of the polyelectrolyte molecules permeate into the gap and lead to a steric charge separation. This gives rise to a distance-dependent membrane potential, which translates into a repulsive electrostatic disjoining pressure. From the solution of the nonlinear Poisson–Boltzmann equation, we obtain the distribution of the potential and of ions. We then derive an explicit formula for the pressure exerted on the membranes and show that it deviates from the classical van't Hoff expression for the osmotic pressure. This difference is interpreted in terms of a repulsive electrostatic disjoining pressure originating from the overlap of counterion clouds inside the gap. We also develop a simplified theory based on a linearized Poisson–Boltzmann approach. A comparison with simulation of a primitive model for the electrolyte is provided and does confirm the validity of the theoretical predictions. Beyond the fundamental result that the neutral surfaces can repel, this mechanism not only helps to control the adhesion and long-range interactions of living cells, bacteria, and vesicles, but also allows us to argue that electrostatic interactions should play enormous role in determining behavior and functions of systems bounded by semi-permeable membranes.

1.
P.
Sheeler
and
D. E.
Bianchi
,
Cell and Molecular Biology
(
Wiley
,
New York
,
1987
).
2.
M.
Winter
and
R. J.
Brodd
,
Chem. Rev.
104
,
4245
(
2004
).
4.
F. M.
Menger
and
J. S.
Keiper
,
Curr. Opin. Chem. Biol.
2
,
726
(
1998
).
5.
O. I.
Vinogradova
,
O. V.
Lebedeva
, and
B. S.
Kim
,
Annu. Rev. Mater. Res.
36
,
143
(
2006
).
6.
O. I.
Vinogradova
,
J. Phys.: Condens. Matter
16
,
R1105
(
2004
).
7.
8.
9.
B.
Derjaguin
and
L.
Landau
,
Progr. Surf. Sci.
43
,
30
(
1993
).
10.
B. S.
Kim
,
V.
Lobaskin
,
R.
Tsekov
, and
O. I.
Vinogradova
,
J. Chem. Phys.
126
,
244901
(
2007
).
11.
A.
Razatos
,
Y. L.
Ong
,
M. M.
Sharma
, and
G.
Georgiou
,
Proc. Natl. Acad. Sci. U.S.A.
95
,
11059
(
1998
).
12.
B. A.
Jucker
,
H.
Harms
, and
A. J. B.
Zehnder
,
J. Bacteriol.
178
,
5472
(
1996
).
13.
D.
Gingell
,
I.
Todd
, and
V. A.
Parsegian
,
Nature (London)
268
,
767
(
1977
).
14.
R. B.
Schoch
,
J.
Han
, and
P.
Renaud
,
Rev. Mod. Phys.
80
,
839
(
2008
).
15.
J.
de Jong
,
R. G.H.
Lammertink
, and
M.
Wessling
,
Lab Chip
6
,
1125
(
2006
).
16.
The early classical analysis concerned only fully permeable charged membranes (Ref. 26).
17.
R.
Tsekov
and
O. I.
Vinogradova
,
J. Chem. Phys.
126
,
094901
(
2007
).
18.
R.
Tsekov
,
M. R.
Stukan
, and
O. I.
Vinogradova
,
J. Chem. Phys.
129
,
244707
(
2008
).
19.
D.
Andelman
,
Handbook of Biological Physics
(
Elsevier
,
New York
,
1995
), Chap. 12.
21.
B. W.
Ninham
and
V. A.
Parsegian
,
J. Theor. Biol.
31
,
405
(
1971
).
22.
I.
Langmuir
,
J. Chem. Phys.
6
,
873
(
1938
).
23.
M.
Deserno
and
H. H.
von Grünberg
,
Phys. Rev. E
66
,
011401
(
2002
).
24.
J.
Dobnikar
,
R.
Castaneda-Priego
,
H. H.
von Grünberg
, and
E.
Trizac
,
New J. Phys.
8
,
277
(
2006
).
25.
We stress that it would be wrong in the linearized theory to evaluate pressure on the membrane as kBTCo(h/2) as it has been discussed in previous work (Refs. 17,18,23).
26.
V. A.
Parsegian
and
D.
Gingell
,
Biophys. J.
12
,
1192
(
1972
).
27.
H.-J.
Limbach
,
A.
Arnold
,
B. A.
Mann
, and
C.
Holm
,
Comput. Phys. Commun.
174
,
704
(
2006
).
28.
M. R.
Stukan
,
V.
Lobaskin
,
C.
Holm
, and
O. I.
Vinogradova
,
Phys. Rev. E
73
,
021801
(
2006
).
29.
J.
Nardi
,
R.
Bruinsma
, and
E.
Sackmann
,
Phys. Rev. E
58
,
6340
(
1998
).
You do not currently have access to this content.