High electron temperature plasmas with steep temperature gradient in the core are obtained in recent experiments in the Large Helical Device [A. Komori et al, Fusion Sci. Technol.58, 1 (2010)]. Such plasmas are called core electron-root confinement (CERC) and have attracted much attention. In typical CERC plasmas, the radial electric field shows a transition phenomenon from a small negative value (ion root) to a large positive value (electron root) and the radial electric field in helical plasmas are determined dominantly by the ambipolar condition of neoclassical particle flux. To investigate such plasmas’ neoclassical transport precisely, the numerical neoclassical transport code, FORTEC-3D [S. Satake et al, J. Plasma Fusion Res.1, 002 (2006)], which solves drift kinetic equation based on δf Monte Carlo method and has been applied for ion species so far, is extended to treat electron neoclassical transport. To check the validity of our new FORTEC-3D code, benchmark calculations are carried out with GSRAKE [C. D. Beidler et al, Plasma Phys. Controlled Fusion43, 1131 (2001)] and DCOM/NNW [A. Wakasa et al, Jpn. J. Appl. Phys.46, 1157 (2007)] codes which calculate neoclassical transport using certain approximations. The benchmark calculation shows a good agreement among FORTEC-3D, GSRAKE and DCOM/NNW codes for a low temperature (Te(0)=1.0keV) plasma. It is also confirmed that finite orbit width effect included in FORTEC-3D affects little neoclassical transport even for the low collisionality plasma if the plasma is at the low temperature. However, for a higher temperature (5 keV at the core) plasma, significant difference arises among FORTEC-3D, GSRAKE, and DCOM/NNW. These results show an importance to evaluate electron neoclassical transport by solving the kinetic equation rigorously including effect of finite radial drift for high electron temperature plasmas.

1.
H.
Takahashi
,
T.
Shimozuma
,
S.
Kubo
,
I.
Yamada
,
S.
Muto
,
M.
Yokoyama
,
H.
Tsuchiya
,
T.
Ido
,
A.
Shimizu
,
C.
Suzuki
,
K.
Ida
,
S.
Matsuoka
,
S.
Satake
,
K.
Narihara
,
N.
Tamura
,
Y.
Yoshimura
,
H.
Igami
,
H.
Kasahara
,
Y.
Tatematsu
,
T.
Mutoh
, and
T. L. E. Group
,
IAEA Fusion Energy Conference 2010
, Daejon, Korea,
2010
, pp.
EXC
P8
.
2.
M.
Yokoyama
,
H.
Maaßberg
,
C. D.
Beidler
,
V.
Tribaldos
,
K.
Ida
,
F.
Castejon
,
T.
Estrada
,
A.
Fujisawa
,
T.
Minami
,
T.
Shimozuma
,
J.
Herranz
,
S.
Murakami
, and
H.
Yamada
,
Fusion Sci. Technol.
50
,
327
(
2006
).
3.
H.
Idei
,
K.
Ida
,
H.
Sanuki
,
H.
Yamada
,
H.
Iguchi
,
S.
Kubo
,
R.
Akiyama
,
H.
Arimoto
,
M.
Fujiwara
,
M.
Hosokawa
,
K.
Matsuoka
,
S.
Morita
,
K.
Nishimura
,
K.
Ohkubo
,
S.
Okamura
,
S.
Sakakibara
,
C.
Takahashi
,
Y.
Takita
,
K.
Tsumori
, and
I.
Yamada
,
Phys. Rev. Lett.
71
,
2220
(
1993
).
4.
K.
Ida
,
T.
Shimozuma
,
H.
Funaba
,
K.
Narihara
,
S.
Kubo
,
S.
Murakami
,
A.
Wakasa
,
M.
Yokoyama
,
Y.
Takeiri
,
K.
Watanabe
,
K.
Tanaka
,
M.
Yoshinuma
,
Y.
Liang
, and
N.
Ohyabu
,
Phys. Rev. Lett.
91
,
085003
(
2003
).
5.
K.
Ida
,
M.
Yoshinuma
,
M.
Yokoyama
,
S.
Inagaki
,
N.
Tamura
,
B.
Peterson
,
T.
Morisaki
,
S.
Masuzaki
,
A.
Komori
,
Y.
Nagayama
,
K.
Tanaka
,
K.
Narihara
,
K.
Watanabe
,
C.
Beidler
, and
LHD Experimental Group
,
Nucl. Fusion
,
45
,
391
(
2005
).
6.
A.
Fujisawa
,
A.
Shimizu
,
H.
Nakano
,
S.
Ohsima
,
K.
Itoh
,
H.
Iguchi
,
Y.
Yoshimura
,
T.
Minami
,
K.
Nagaoka
,
C.
Takahashi
,
M.
Kojima
,
S.
Nishimura
,
M.
Isobe
,
C.
Suzuki
,
T.
Akiyama
,
Y.
Nagashima
,
K.
Ida
,
K.
Toi
,
T.
Ido
,
S. -I.
Itoh
,
K.
Matsuoka
,
S.
Okamura
, and
P. H.
Diamond
,
Plasma Phys. Controlled Fusion
48
,
S205
(
2006
).
7.
C. D.
Beidler
and
W. D.
D’haeseleer
,
Plasma Phys. Controlled Fusion
,
37
,
463
(
1995
).
8.
C. D.
Beidler
and
H.
Maaßberg
,
Plasma Phys. Controlled Fusion
43
,
1131
(
2001
).
9.
A.
Wakasa
,
S.
Murakami
,
M.
Itagaki
, and
S. -i.
Oikawa
,
Jpn. J. Appl. Phys.
46
,
1157
(
2007
).
10.
A.
Wakasa
,
S.
Murakami
, and
S. -i.
Oikawa
,
J. Plasma Fusion Res.
3
,
S1030
(
2008
).
11.
V.
Tribaldos
and
J.
Guasp
,
Plasma Phys. Controlled Fusion
47
,
545
(
2005
).
12.
K.
Miyamoto
,
Plasma Physics for Nuclear Fusion
(
MIT Press
,
Cambridge, Massachusetts
,
1980
).
13.
S.
Satake
,
M.
Okamoto
,
N.
Nakajima
,
H.
Sugama
, and
M.
Yokoyama
,
J. Plasma Fusion Res.
1
,
002
(
2006
).
14.
S.
Satake
,
R.
Kanno
, and
H.
Sugama
,
J. Plasma Fusion Res.
3
,
S1062
(
2008
).
15.
S.
Brunner
,
E.
Valeo
, and
J. A.
Krommes
,
Phys. Plasmas
6
,
4504
(
1999
).
16.
W.
Wang
,
N.
Nakajima
,
M.
Okamoto
, and
S.
Murakami
,
J. Plasma Fusion Res.
2
,
250
(
1999
).
17.
A. H.
Boozer
,
Phys. Fluids
24
,
1999
(
1981
).
18.
R. G.
Littlejohn
,
J. Plasma Phys.
29
,
111
(
1983
).
19.
R. B.
White
,
Phys. Fluids B
2
,
845
(
1990
).
20.
Z.
Lin
,
W. M.
Tang
, and
W. W.
Lee
,
Phys. Plasmas
2
,
2975
(
1995
).
21.
P.
Helander
and
D. J.
Sigmar
,
Collisional Transport in Magnetized Plasmas
(
Cambridge University Press
,
Cambridge, UK
,
2002
).
22.
A. H.
Boozer
and
G.
Kuo-Petravic
,
Phys. Fluids
24
,
851
(
1981
).
23.
H.
Maaßberg
,
C. D.
Beidler
, and
Y.
Turkin
,
Phys. Plasmas
16
,
072504
(
2009
).
24.
S.
Murakami
,
A.
Wakasa
,
H.
Maaßberg
,
C.
Beidler
,
H.
Yamada
,
K.
Watanabe
, and
L. E.
Group
,
Nucl. Fusion
42
,
L19
(
2002
).
25.
S. P.
Hirshman
and
O.
Betancourt
,
J. Comput. Phys.
96
,
99
(
1991
).
You do not currently have access to this content.