In this paper we report results of structural, spectroscopic, and magnetic investigations of MgFe2O4 nanoparticles prepared by soft mechanochemical synthesis. MgFe2O4 nanoparticles crystallize in Fd3¯m space group with mixed cation distribution and reduced percentage of Fe3+ at tetrahedral (8a) sites. Discrepancy in the cation distribution compared to that in the bulk Mg–ferrite is one of the highest known. X-ray line broadening analysis reveals crystallite size and strain anisotropy. The saturation magnetization, Msat=62emu/g measured at 5 K is twice higher than that found in the bulk counterparts. Such high value of Msat is attributed to the low value of cation inversion parameter (δ=0.69), to the core/shell structure of the nanoparticles and to the surface/volume ratio. Mössbauer spectrum collected at room temperature reveals ferrimagnetic ordering between Fe3+ ions in 8a and 16d sites, while zero-field-cooled (ZFC) and field-cooled (FC) M(T) measurements were shown superparamagnetic state above 350 K.

1.
W. A.
De Heer
, in
Nanomagnetism in: Characterization of Nanophase Materials
, edited by
Z. L.
Wang
(
Wiley
,
New York
,
2000
).
2.
J. de A.
Gomes
,
M. H.
Sousa
,
F. A.
Tourinho
,
R.
Aquino
,
G. J.
da Silva
,
J.
Depeyrot
,
E.
Dubois
, and
R.
Perzynski
,
J. Phys. Chem. C
112
,
6220
(
2008
).
3.
G. F.
Goya
,
V.
Grazú
, and
M. R.
Ibarra
,
Curr. Nanosci.
4
,
1
(
2008
).
4.
G. F.
Goya
,
E.
Lima
,
A. D.
Arelaro
,
T.
Torres
,
H. R.
Rechenberg
,
L.
Rossi
,
C.
Marquina
, and
M. R.
Ibarra
,
IEEE Trans. Magn.
44
,
4444
(
2008
).
5.
A.
Kremenovic
,
B.
Antic
,
V.
Spasojevic
,
M.
Vucinic-Vasic
,
Z.
Jaglicic
,
J.
Pirnat
, and
Z.
Trontelj
,
J. Phys.: Condens. Matter
17
,
4285
(
2005
).
6.
A.
Navrotsky
and
J. O.
Kleppa
,
J. Inorg. Nucl. Chem.
29
,
2701
(
1967
).
7.
V.
Šepelak
,
A.
Feldhoff
,
P.
Heitjans
,
F.
Krumeich
,
D.
Menzel
,
F. J.
Litterst
,
I.
Bergmann
, and
K. D.
Becker
,
Chem. Mater.
18
,
3057
(
2006
).
8.
V.
Šepelak
,
D.
Baabe
,
D.
Mienert
,
F. J.
Litterst
, and
K. D.
Becker
,
Scr. Mater.
48
,
961
(
2003
).
9.
A.
Pradeep
,
P.
Priyadharsini
, and
G.
Chandrasekaran
,
J. Magn. Magn. Mater.
320
,
2774
(
2008
).
10.
E.
Avvakumov
,
M.
Senna
, and
N.
Kosova
,
Soft Mechanochemical Synthesis
(
Kluwer Academic
,
Dordrecht
,
2001
).
11.
M. B.
Pavlovic
,
C.
Jovalekic
,
A. S.
Nikolic
,
D.
Manojlovic
, and
N.
Sojic
, “
Soft mechanochemical synthesis of MgFe2O4 nanoparticles from the mixture of α-Fe2O3 with Mg(OH)2 and Fe(OH)3 with Mg(OH)2
,”
Mater. Sci. Technol.
mst8685.3d (to be published).
12.
B.
Antic
,
D.
Rodic
,
A. S.
Nikolic
,
Z.
Kacarevic-Popovic
, and
Lj.
Karanović
,
J. Alloys Compd.
336
,
286
(
2002
).
14.
R. D.
Shannon
,
Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.
32
,
751
(
1976
).
15.
Z.
Cvejic
,
S.
Rakic
,
A.
Kremenovic
,
B.
Antic
,
C.
Jovalekic
, and
Ph.
Colomban
,
Solid State Sci.
8
,
908
(
2006
).
16.
J.
Rodriguez-Carvajal
,
Physica B
192
,
55
(
1993
).
18.
V.
Honkimäki
and
P.
Suortti
, in
Defect and Microstructure Analysis by Diffraction
, edited by
R. L.
Snyder
,
J.
Fiala
, and
H. J.
Bunge
(
Oxford University Press
,
New York
,
1999
).
19.
P. W.
Stephens
,
J. Appl. Crystallogr.
32
,
281
(
1999
).
20.
A. R.
Stokes
and
A. J. C.
Wilson
,
Proc. Phys. Soc. London
56
,
174
(
1944
).
21.
N. C.
Popa
,
J. Appl. Crystallogr.
31
,
176
(
1998
).
22.
T.
Roisnel
and
J.
Rodriguez-Carvajal
,
Mater. Sci. Forum
378-381
,
118
(
2001
).
23.
D. L. A.
De Faria
,
S.
Venâncio
, and
M. T.
De Oliveira
,
J. Raman Spectrosc.
28
,
873
(
1997
).
24.
F.
Rull
,
J.
Martinez-Frias
,
A.
Sansano
,
J.
Medina
, and
H. G. M.
Edwards
,
J. Raman Spectrosc.
35
,
497
(
2004
).
25.
D.
Neff
,
S.
Reguer
,
L.
Bellot-Gurlet
,
Ph.
Dillmann
, and
R.
Bertholon
,
J. Raman Spectrosc.
35
,
739
(
2004
).
26.
Ph.
Colomban
,
S.
Jullian
,
M.
Parlier
, and
P.
Monge-Cadet
,
Aerosp. Sci. Technol.
3
,
447
(
1999
).
27.
Ph.
Colomban
,
Mater. Sci. Forum
453–454
,
269
(
2004
).
28.
Ph.
Colomban
,
Spectroscopy Europe
15
,
8
(
2003
).
29.
I.
Kosacki
,
T.
Suzuki
,
H.
Anderson
, and
Ph.
Colomban
,
Solid State Ionics
149
,
99
(
2002
).
30.
A.
Franco
, Jr.
,
T. E. P.
Alves
,
E. C. O.
Lima
,
E. S.
Nunes
, and
V.
Zapf
,
Appl. Phys. A: Mater. Sci. Process.
94
,
131
(
2009
).
31.
Y.
Ichiyanagi
,
M.
Kubota
,
S.
Moritake
,
Y.
Kanazawa
,
T.
Yamada
, and
T.
Uehashi
,
J. Magn. Magn. Mater.
310
,
2378
(
2007
).
32.
M.
Gu
,
B.
Yue
,
R.
Bao
, and
H.
He
,
Mater. Res. Bull.
44
,
1422
(
2009
).
33.
Q.
Chen
,
A. J.
Rondinone
,
B. C.
Chakoumakos
, and
Z. J.
Zhang
,
J. Magn. Magn. Mater.
194
,
1
(
1999
).
34.
R. H.
Kodama
,
A. E.
Berkowitz
,
E. J.
McNiff
, Jr.
, and
S.
Foner
,
Phys. Rev. Lett.
77
,
394
(
1996
).
35.
L. D.
Tung
,
V.
Kolesnichenko
,
D.
Caruntu
,
N. H.
Chou
,
J.
O'Connor
, and
L.
Spinu
,
J. Appl. Phys.
93
,
7486
(
2003
).
36.
G. F.
Goya
,
T. S.
Berquó
,
F. C.
Fonseca
, and
M. P.
Morales
,
J. Appl. Phys.
94
,
3520
(
2003
).
37.
S.
Ammar
,
A.
Helfen
,
N.
Jouini
,
F.
Fiévet
,
I.
Rosenman
,
F.
Villain
,
P.
Molinié
, and
M.
Danot
,
J. Mater. Chem.
11
,
186
(
2001
).
38.
N.
Pailhé
,
A.
Wattiaux
,
M.
Gaudon
, and
A.
Demourgues
,
J. Solid State Chem.
181
,
1040
(
2008
).
39.
E.
De Grave
,
A.
Govaert
,
D.
Chambaere
, and
G.
Robbrecht
,
Physica B
96
,
103
(
1979
).
You do not currently have access to this content.