Rotationally resolved microwave and ultraviolet spectra of jet-cooled diphenylmethane (DPM) and DPM-d12 have been obtained in S0, S1, and S2 electronic states using Fourier-transform microwave and UV laser/molecular beam spectrometers. The S0 and S1 states of both isotopologues have been well fit to asymmetric rotor Hamiltonians that include only Watson distortion parameters. The transition dipole moment (TDM) orientations of DPM and DPM-d12 are perpendicular to the C2 symmetry axes with 66(2)%:34(2)% a:c hybrid-type character, establishing the lower exciton S1 origin as a completely delocalized, antisymmetric combination of the zero-order locally excited states of the toluene-like chromophores. In contrast, the rotational structures of the S2 origin bands at S1+123cm1 and S1+116cm1, respectively, display b-type Q-branch transitions and lack the central a-type Q-branch features that characterize the S1 origins, indicating TDM orientations parallel to the C2(b) symmetry axes as anticipated for the upper exciton levels. However, rotational fits were not possible in line with expectations from previous work [N. R. Pillsbury, J. A. Stearns, C. W. Müller, T. S. Zwier, and D. F. Plusquellic, J. Chem. Phys.129, 114301 (2008)] where the S2 origins were found to be largely perturbed through vibronic interactions with the S1 symmetric, antisymmetric torsional, and butterfly levels in close proximity. Predictions from a dipole-dipole coupling model and ab initio theories are shown to be in fair agreement with the observed TDM orientations and exciton splitting. The need to include out-of-ring-plane dipole coupling terms indicates that in-plane models are not sufficient to fully account for the excitonic interactions in this bichromophore.

1.
R.
Coffman
and
D. S.
McClure
,
Can. J. Chem.
36
,
48
(
1958
).
2.
D. S.
McClure
,
Can. J. Chem.
36
,
59
(
1958
).
3.
E.
Arunan
and
H. S.
Gutowsky
,
J. Chem. Phys.
98
,
4294
(
1993
).
4.
N. A.
van Dantzig
,
D. H.
Levy
,
C.
Vigo
, and
P.
Piotrowiak
,
J. Chem. Phys.
103
,
4894
(
1995
).
5.
G. D.
Scholes
and
K. P.
Ghiggino
,
J. Phys. Chem.
98
,
4580
(
1994
).
6.
S. C.
Abrahams
,
J. M.
Robertson
, and
J. G.
White
,
Acta Crystallogr.
2
,
238
(
1949
);
D. W.
Cruickshank
,
Acta Crystallogr.
10
,
504
(
1957
).
7.
A. L. L.
East
,
P.
Cid-Aguero
,
H.
Liu
,
R. H.
Judge
, and
E. C.
Lim
,
J. Phys. Chem. A
104
,
1456
(
2000
).
8.
A. L.
Thompson
,
K. M.
Gaab
,
J.
Xu
,
C. J.
Bardeen
, and
T. J.
Martinez
,
J. Phys. Chem. A
108
,
671
(
2004
).
9.
T.
Fujiwara
,
M. Z.
Zgierski
, and
E. C.
Lim
,
J. Phys. Chem. A
112
,
4736
(
2008
).
10.
E. A.
Lipman
,
B.
Schuler
,
O.
Bakajin
, and
W. A.
Eaton
,
Science
301
,
1233
(
2003
).
11.
Z. J.
Donhauser
,
B. A.
Mantooth
,
K. F.
Kelly
,
L. A.
Bumm
,
J. D.
Monell
,
J. J.
Stapleton
,
D. W.
Price
, Jr.
,
A. M.
Rawlett
,
D. L.
Allara
,
J. M.
Tour
, and
P. S.
Weiss
,
Science
292
,
2303
(
2001
).
12.
J. J.
Hopfield
,
Phys. Rev.
112
,
1555
(
1958
).
13.
14.
N. R.
Pillsbury
,
J. A.
Stearns
,
C. W.
Müller
,
T. S.
Zwier
, and
D. F.
Plusquellic
,
J. Chem. Phys.
129
,
114301
(
2008
).
15.
D. P.
Craig
and
P. C.
Hobbins
,
J. Chem. Soc.
1955
,
539
.
16.
M. A.
El-Sayed
and
G. W.
Robinson
,
Mol. Phys.
4
,
273
(
1961
).
17.
M.
Kasha
,
H. R.
Rawls
, and
M.
El-Bayoumi
,
Pure Appl. Chem.
11
,
371
(
1965
).
18.
N. A.
van Dantzig
,
D. H.
Levy
,
C.
Vigo
, and
P.
Piotrowiak
,
J. Chem. Phys.
103
,
4894
(
1995
).
19.
T. M.
Halasinski
,
J. L.
Weisman
,
R.
Ruiterkamp
,
T. J.
Lee
,
F.
Salama
, and
M.
Head-Gordon
,
J. Phys. Chem. A
107
,
3660
(
2003
).
20.
A.
Held
and
D. W.
Pratt
,
J. Chem. Phys.
96
,
4869
(
1992
).
21.
A.
Müller
,
F.
Talbot
, and
S.
Leutwyler
,
J. Chem. Phys.
116
,
2836
(
2002
).
22.
D. F.
Plusquellic
,
S. R.
Davis
, and
F.
Jahanmir
,
J. Chem. Phys.
115
,
225
(
2001
).
23.
L. E.
Jusinski
and
C.
Taajes
,
Rev. Sci. Instrum.
72
,
2837
(
2001
).
24.
W. A.
Majewski
and
W. L.
Meerts
,
J. Mol. Spectrosc.
104
,
271
(
1984
).
25.
D. F.
Plusquellic
,
R. J.
Lavrich
,
T.
Petralli-Mallow
,
S. R.
Davis
,
T. M.
Korter
, and
R. D.
Suenram
,
Chem. Phys.
283
,
355
(
2002
).
26.
E.
Riedle
,
S. H.
Ashworth
,
J. T.
Farrell
,Jr.
, and
D. J.
Nesbitt
,
Rev. Sci. Instrum.
65
,
42
(
1994
);
D. F.
Plusquellic
,
O.
Votava
, and
D. J.
Nesbitt
,
Appl. Opt.
35
,
1464
(
1996
).
[PubMed]
27.
R. D.
Suenram
,
J. U.
Grabow
,
A.
Zuban
, and
I.
Leonov
,
Rev. Sci. Instrum.
70
,
2127
(
1999
);
A. R. H.
Walker
,
W.
Chen
,
S. E.
Novick
,
B. D.
Bean
, and
M. D.
Marshall
,
J. Chem. Phys.
102
,
7298
(
1995
).
28.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, GAUSSIAN03, Revision C.01 Gaussian Inc., Pittsburgh, PA,
2004
.
29.
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
,
S. T.
Elbert
,
M. S.
Gordon
,
J. H.
Jensen
,
S.
Koseki
,
N.
Matsunaga
,
K. A.
Nguyen
,
S. J.
Su
,
T. L.
Windus
,
M.
Dupuis
, and
J. A.
Montgomery
,
J. Comput. Chem.
14
,
1347
(
1993
).
30.
J. A.
Hageman
,
R.
Wehrens
,
R.
de Gelder
,
W. L.
Meerts
, and
L. M. C.
Buydens
,
J. Chem. Phys.
113
,
7955
(
2000
);
M.
Schmit
and
W. L.
Meerts
, in
Handbook of High Resolution Spectroscopy
, edited by
M.
Quack
and
F.
Merkt
(
Wiley
,
New York
,
2008
).
31.
W. A.
Majewski
,
J. F.
Pfanstiel
,
D. F.
Plusquellic
, and
D. W.
Pratt
, in
Laser Techniques in Chemistry
, edited by
A. B.
Myers
and
T. R.
Rizzo
(
Wiley
,
New York
,
1995
), Vol.
XXIII
;
D. F.
Plusquellic
,
R. D.
Suenram
,
B.
Maté
,
J. O.
Jensen
, and
A. C.
Samuels
,
J. Chem. Phys.
115
,
3057
(
2001
).
32.
Y. R.
Wu
and
D. H.
Levy
,
J. Chem. Phys.
91
,
5278
(
1989
);
G.
Berden
,
W. L.
Meerts
, and
E.
Jalviste
,
J. Chem. Phys.
103
,
9596
(
1995
).
33.
F. J.
Lovas
(unpublished).
34.
I. V.
Tretiakov
and
J. R.
Cable
,
J. Chem. Phys.
107
,
9715
(
1997
).
35.
N. R.
Pillsbury
,
C. W.
Müller
,
T. S.
Zwier
, and
D. F.
Plusquellic
, “
Conformational effects on excitonic interactions ina prototypical H-bonded bichromophore: Bis(2–hydroxyphenyl)methane
,”
J. Phys. Chem. A.
(submitted).
36.
J.
Jortner
,
Faraday Discuss.
108
,
1
(
1997
).
37.
N. R.
Pillsbury
,
C. W.
Müller
,
T. S.
Zwier
,
D. F.
Plusquellic
and
J. R.
Cable
(unpublished).
38.
R. W.
McKellar
,
D. W.
Tokaryk
, and
D. R. T.
Appadoo
,
J. Mol. Spectrosc.
244
,
146
(
2007
);
A. R. W.
McKellar
and
D. R. T.
Appadoo
,
J. Mol. Spectrosc.
250
,
106
(
2008
).
39.
E.
Hudspeth
,
D. A.
McWhorter
, and
B. H.
Pate
,
J. Chem. Phys.
107
,
8189
(
1997
);
D. A.
McWhorter
and
B. H.
Pate
,
J. Phys. Chem. A
102
,
8795
(
1998
).
40.
R. T.
Kroemer
,
K. R.
Liedl
,
J. A.
Dickinson
,
E. G.
Robertson
,
J. P.
Simons
,
D. R.
Borst
, and
D. W.
Pratt
,
J. Am. Chem. Soc.
120
,
12573
(
1998
).
41.
D. P.
Craig
and
S. H.
Walmsley
,
Excitons in Molecular Crystals
(
Benjamin
,
New York
,
1968
);
S. B.
Singham
and
D. W.
Pratt
,
J. Phys. Chem.
86
,
507
(
1982
).
42.
H. -J.
Werner
and
P. J.
Knowles
,
J. Chem. Phys.
89
,
5803
(
1988
).
43.
G. M.
Chaban
,
J.
Lundell
, and
R. B.
Gerber
,
J. Chem. Phys.
115
,
7341
(
2001
).
44.
J.
Geertsen
,
M.
Rittby
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
164
,
57
(
1989
);
J. F.
Stanton
and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
7029
(
1993
);
K.
Kowalski
and
P.
Piecuch
,
J. Chem. Phys.
115
,
643
(
2001
).
45.
O.
Christiansen
,
H.
Koch
, and
P.
Jørgensen
,
Chem. Phys. Lett.
243
,
409
(
1995
).
You do not currently have access to this content.