The stability of circular Couette flow in discontinuous axisymmetric geometries is investigated using numerical simulations and physical experiments. By contouring the geometry of the inner cylinder, Taylor vortices can be made to appear in discrete sections along the length of the cylinder while adjoining sections remain stable. The disparate flows are connected by transition regions that arise from the stability of the axially nonuniform base flow state. The geometry of the inner cylinder can be tailored to produce the simultaneous onset of Taylor vortices of different wavelength in neighboring sections. In another variant, a stack of inner cylinders of common radius are made to rotate independently to produce adjacent regions of stable and unstable flow.

1.
G. I.
Taylor
, “
Stability of a viscous liquid contained between two rotating cylinders
,”
Philos. Trans. R. Soc. London, Ser. A
223
,
289
(
1923
).
2.
M.
Wimmer
, “
An experimental investigation of Taylor vortex flow between conical cylinders
,”
J. Fluid Mech.
292
,
205
(
1995
).
3.
B.
Denne
and
M.
Wimmer
, “
Travelling Taylor vortices in closed systems
,”
Acta Mech.
133
,
69
(
1999
).
4.
H.-G.
Paap
and
H.
Riecke
, “
Drifting vortices in ramped Taylor vortex flow: Quantitative results from phase equation
,”
Phys. Fluids A
3
,
1519
(
1991
).
5.
R. J.
Wiener
,
G. L.
Snyder
,
M. P.
Prange
,
D.
Freiani
, and
P. R.
Diaz
, “
Period-doubling cascade to chaotic phase dynamics in Taylor vortex flow with hourglass geometry
,”
Phys. Rev. E
55
,
5489
(
1997
).
6.
C. A.
Rotz
and
N. P.
Suh
, “
Vortex motions induced by V-grooved rotating cylinders and their effect on mixing performance
,”
J. Fluids Eng.
101
,
186
(
1979
).
7.
M.
Wimmer
, “
Experiments on a viscous fluid flow between concentric rotating spheres
,”
J. Fluid Mech.
78
,
317
(
1976
).
8.
E.
Ikeda
and
T.
Maxworthy
, “
Spatially forced corotating Taylor–Couette flow
,”
Phys. Rev. E
49
,
5218
(
1994
).
9.
S.
Drozdov
,
M.
Rafique
, and
S.
Skali-Lami
, “
An asymmetrical periodic vortical structures and appearance of the self induced pressure gradient in the modified Taylor flow
,”
Theor. Comput. Fluid Dyn.
18
,
137
(
2004
).
10.
R.
Tagg
, “
A guide to literature related to the Taylor–Couette problem
,” in
Ordered and Turbulent Patterns in Taylor–Couette Flow
, edited by
C. D.
Andereck
and
F.
Hayot
(
Plenum
,
New York
,
1992
).
11.
D. D.
Joseph
and
Y. Y.
Renardy
,
Fundamentals of Two-Fluid Dynamics, Part 1: Mathematical Theory and Applications
(
Spring-Verlag
,
New York
,
1993
).
12.
R.
Tagg
(private communication,
2007
).
13.
R.
Tagg
and
P. D.
Weidman
, “
Linear stability of radially heated circular Couette flow with simulated radial gravity
,”
ZAMP
58
,
431
(
2007
).
14.
E. M.
Sparrow
,
W. D.
Munro
, and
V. K.
Jonsson
, “
Instability of the flow between rotating cylinders: the wide gap problem
,”
J. Fluid Mech.
20
,
25
(
1964
).
15.
P. H.
Roberts
, appendix to:
R. J.
Donnelly
and
K. W.
Schwarz
, “
Experiments on the stability of viscous flow between rotating cylinders. VI. Finite-amplitude experiments
,”
Proc. R. Soc. London, Ser. A
283
,
531
(
1965
).
16.
R. C.
DiPrima
,
P. M.
Eagles
, and
B. S.
Ng
, “
The effect of radius ratio on the stability of Couette flow and Taylor vortex flow
,”
Phys. Fluids
27
,
2403
(
1984
).
17.
P. F.
Fischer
, “
An overlapping Schwarz method for spectral element solution of the incompressible Navier–Stokes equations
,”
J. Comput. Phys.
133
,
84
(
1997
).
18.
O.
Czarny
,
E.
Serre
,
P.
Bontoux
, and
R. M.
Lueptow
, “
Interaction between Ekman pumping and the centrifugal instability in Taylor–Couette flow
,”
Phys. Fluids
15
,
467
(
2003
).
19.
O.
Czarny
and
R. M.
Lueptow
, “
Time scales for transition in Taylor–Couette flow
,”
Phys. Fluids
19
,
054103
(
2007
).
20.
E. L.
Koschmieder
,
Bénard Cells and Taylor Vortices
(
Cambridge University Press
,
Cambridge
,
1993
).
21.
J.
Wesfreid
,
P.
Bergé
, and
M.
Dubois
, “
Induced pretransitional Rayleigh–Bénard convection
,”
Phys. Rev. A
19
,
1231
(
1979
).
You do not currently have access to this content.