Multifarious hydrodynamic cavitating flow patterns have been detected in the flow of de-ionized water through a 40.5μm wide and 100.8μm deep rectangular slot micro-orifice established inside a 202.6μm wide and 20 000μm long microchannel. This article presents and discusses the flow patterns observed at various stages of cavitation in the aforementioned micrometer-sized silicon device. Cavitation inception occurs with the appearance of inchoate bubbles that emerge from two thin vapor cavities that emanate from the boundaries of the constriction element. A reduction in the cavitation number beyond inception results in the development of twin coherent unsteady large vapor cavities, which appear just downstream of the micro-orifice and engulf the liquid jet. The shedding of both spherical and nonspherical vapor bubbles and their subsequent collapse into vapor plumes downstream of the orifice occurs intermittently. A further reduction in the exit pressure only aids in the elongation of the two coherent cavities and produces two stable vapor pockets. Additionally, interference fringes are clearly observed, showing that the vapor pocket has a curved interface with liquid. At low cavitation numbers, the flow undergoes a flip downstream and the two vapor pockets coalesce and form a single vapor pocket that is encircled by the liquid and extends until the exit of the microchannel. The cavitating flow patterns are unique and are markedly different from those reported for their macroworld counterparts. Evidence of pitting due to cavitation has been observed on the silicon just downstream of the micro-orifice. It is therefore apparent that cavitation will continue to influence/impact the design of high-speed MEMS hydraulic machines, and the pernicious effects of cavitation in terms of erosion, choking, and a reduction in performance will persist in microfluidic systems if apposite hydrodynamic conditions develop.

1.
A. H.
Epstein
and
S. D.
Senturia
, “
Macro power from micro machinery
,”
Science
276
,
1211
(
1997
).
2.
A. H.
Epstein
,
S. D.
Senturia
,
G.
Anathasuresh
,
A.
Ayon
,
K.
Breuer
,
K.-S.
Chen
,
F. E.
Ehrich
,
G.
Gauba
,
R.
Ghodssi
,
C.
Groshenry
,
S.
Jacobson
,
J. H.
Lang
,
C.-C.
Lin
,
A.
Mehra
, and
J. M.
Miranda
, “
Power MEMS and microengines
,”
Proc. Transducers 97 Int. Conf. on Solid-State Sens. and Actuators
, Chicago, IL,
1997
, p.
753
.
3.
D. J.
Laser
and
J. G.
Santiago
, “
A review of micropumps
,”
J. Micromech. Microeng.
14
,
R35
(
2004
).
4.
P.
Woias
, “
Micropumps—summarizing the first two decades
,”
Proc. SPIE
4560
,
39
(
2001
).
5.
N.-T.
Nguyen
,
X.
Huang
, and
T. K
,
Chuan
, “
A review of micropumps
,”
J. Fluids Eng.
124
,
384
(
2002
).
6.
X.
Yang
,
A.
Holke
,
S. A.
Jacobson
,
J. H.
Lang
,
M. A.
Schmidt
, and
S. D.
Umans
, “
An electrostatic, on/off microvalve designed for gas fuel delivery for the MIT microengine
,”
J. Microelectromech. Syst.
13
,
660
(
2004
).
7.
H. Q.
Li
,
D. C.
Roberts
,
J. L.
Steyn
,
K. T.
Turner
,
O.
Yaglioglu
,
N. W.
Hagood
,
S. M.
Spearing
, and
M. A.
Schmidt
, “
Fabrication of a high frequency piezoelectric microvalve
,”
Sens. Actuators, A
111
,
51
(
2004
).
8.
D.
Teasdale
,
V.
Milanovic
,
P.
Chang
, and
K. S. J.
Pister
, “
Microrockets for Smart Dust
,”
Smart Mater. Struct.
10
,
1145
(
2001
).
9.
A. P.
London
,
A. A.
Ayon
,
A. H.
Epstein
,
S. M.
Spearing
,
T.
Harrison
,
Y.
Peles
, and
J. L.
Kerrebrock
, “
Microfabrication of a high pressure bipropellant rocket engine
,”
Sens. Actuators, A
92
,
351
(
2001
).
10.
R.
Leoni
, “
On-chip micro-refrigerators for sub-Kelvin cooling
,”
New Astron. Rev.
43
,
317
(
1999
).
11.
N.
Miki
,
C. J.
Teo
,
L. C.
Ho
, and
X.
Zhang
, “
Enhancement of rotordynamic performance of high-speed micro-rotors for power MEMS applications by precision deep reactive ion etching
,”
Sens. Actuators, A
104
,
263
(
2003
).
12.
E. V.
Mukerjee
,
A. P.
Wallace
,
K. Y.
Yan
,
D. W.
Howard
,
R. L.
Smith
, and
S. D.
Collins
, “
Vaporizing liquid microthruster
,”
Sens. Actuators, A
83
,
231
(
2000
).
13.
I.
Hassan
,
P.
Phutthavong
, and
M.
Abdelgawad
, “
Microchannel heat sinks: An overview of the state-of-the-art
,”
Microscale Thermophys. Eng.
8
,
183
(
2004
).
14.
C. B.
Sobhan
and
S. V.
Garimella
, “
A comparative analysis of studies on heat transfer and fluid flow in microchannels
,”
Microscale Thermophys. Eng.
5
,
293
(
2001
).
15.
M.
Gad-el-Hak
, “
Micropumps, microturbines, and flow physics in microdevices
,”
Proc. SPIE
5055
,
242
(
2003
).
16.
H.-S.
Moon
,
D.
Choi
, and
S. M.
Spearing
, “
Development of Si-SiC hybrid structures for elevated temperature micro-turbomachinery
,”
J. Microelectromech. Syst.
13
,
676
(
2004
).
17.
A. H.
Epstein
,
Millimeter-Scale, MEMS Gas Turbine Engines
,
Proc. ASME Turbo Exposition
, Atlanta, GA,
2003
, p.
669
.
18.
S.
Baik
,
J. P.
Blanchard
, and
M. L.
Corradini
, “
Development of micro-diesel injector nozzles via microelectromechanical systems technology and effects on spray characteristics
,”
J. Eng. Gas Turbines Power
125
,
427
(
2003
).
19.
C. -M.
Ho
and
Y.-C.
Tai
, “
Micro-electro-mechanical-systems (MEMS) and fluid flows
,”
Annu. Rev. Fluid Mech.
30
,
579
(
1998
).
20.
P.
Gravesen
,
J.
Branebjerg
, and
O. S.
Jensen
, “
Microfluidics—a review
,”
J. Micromech. Microeng.
3
,
168
(
1993
).
21.
H. A.
Stone
,
A. D.
Strooch
, and
A.
Ajdari
, “
Engineering flows in small devices: Microfluidics toward a lab-on-a-chip
,”
Annu. Rev. Fluid Mech.
36
,
381
(
2004
).
22.
T.
Hasegawa
,
M.
Suganuma
, and
H.
Watanabe
, “
Anomaly of excess pressure drops of the flow through very small orifices
,”
Phys. Fluids
9
,
1
(
1997
).
23.
G.
Stemme
,
G.
Kittilsland
, and
B.
Norden
, “
A sub-micron particle filter in silicon
,”
Sens. Actuators, A
21–23
,
904
(
1990
).
24.
G. M.
Mala
and
D.
Li
, “
Flow characteristics of water in microtubes
,”
Int. J. Heat Fluid Flow
20
,
142
(
1999
).
25.
G. L.
Morini
, “
Single-phase convective heat transfer in microchannels: A review of experimental results
,”
Int. J. Therm. Sci.
43
,
631
(
2004
).
26.
C.
Mishra
and
Y.
Peles
, “
Cavitation in flow through a micro-orifice inside a silicon microchannel
,”
Phys. Fluids
17
,
013601
(
2005
).
27.
C.
Mishra
and
Y.
Peles
, “
Size scale effects on cavitating flows through micro-orifices entrenched in rectangular microchannels
,”
J. Microelectromech. Syst.
14
,
987
(
2005
).
28.
R. E. A.
Arndt
, “
Cavitation in fluid machinery and hydraulic structures
,”
Annu. Rev. Fluid Mech.
13
,
273
(
1981
).
29.
R. T.
Knapp
,
J. W.
Daily
, and
F. G.
Hammit
,
Cavitation
(
McGraw-Hill
, New York,
1970
).
30.
C. E.
Brennen
,
Cavitation and Bubble Dynamics
(
Oxford University Press
, Oxford, UK,
1995
).
31.
J. W.
Holl
, “
Nuclei and cavitation
,”
J. Basic Eng.
92
,
681
(
1970
).
32.
Y.
Ohde
,
H.
Okamoto
,
W.
Hosokawa
, and
T.
Ando
, “
Two-stage increase in negative pressure with repeated cavitation for water in a metal Berthelot tube
,”
J. Phys. D
21
,
1540
(
1988
).
33.
G. M.
Lewis
, “
Tensile strength of liquids in berthelot tubes
,”
Proc. Phys. Soc. London
78
,
133
(
1961
).
34.
Y.
Ohde
,
H.
Wantanabe
,
K.
Hiro
,
K.
Motoshita
, and
Y.
Tanzawa
, “
Raising of negative pressure to around 200bar for some organic liquids in a metal berthelot tube
,”
J. Phys. D
26
,
1188
(
1993
).
35.
F. R.
Young
,
Cavitation
(
McGraw-Hill
, New York,
1989
).
36.
S.
Pennathur
,
Y.
Peles
, and
A. H.
Epstein
,
Cavitation at Micro-Scale in MEMS Fluid Machinery
,”
Proc. ASME Int. Mech. Engg. Congress and Expos
, New Orleans, LA,
2002
, p.
87
.
37.
S.
Pennathur
, “
Micro-scale turbopump blade cavitation
,” M. S. thesis,
Massachusetts Institute of Technology
, Cambridge, MA,
2001
.
38.
H.
Chaves
,
M.
Knapp
,
A.
Kubitzek
, and
F.
Obermeier
, “
High speed flow measurements within an injection nozzle
,”
Proc. SPIE
2052
,
265
(
1993
).
39.
D. P.
Schmidt
,
C. J.
Rutland
, and
M. L.
Corradini
, “
Fully compressible, two-dimensional model of small, high-speed, cavitating nozzles
,”
Atomization Sprays
9
,
255
(
1999
).
40.
W.
Yuan
and
G. H.
Schnerr
, “
Numerical simulation of two-phase flow in injection nozzles: Interaction of cavitation and external jet formation
,”
J. Fluids Eng.
125
,
963
(
2003
).
41.
L. C.
Ganippa
,
G.
Bark
,
S.
Andersson
, and
J.
Chomiak
, “
Cavitation: A contributory factor in the transition from symmetric to asymmetric jets in cross-flow nozzles
,”
Exp. Fluids
36
,
627
(
2004
).
42.
W. Y.
Lee
,
M.
Wong
, and
Y.
Zohar
, “
Pressure loss in constriction microchannels
,”
J. Microelectromech. Syst.
11
,
236
(
2002
).
43.
B.
Freudig
,
S.
Tesch
, and
H.
Schubert
, “
Production of emulsions in high-pressure homogenizers—Part II: Influence of cavitation on droplet breakup
,”
Life Sci.
3
,
266
(
2003
).
44.
Y.
Tomita
and
A.
Shima
, “
Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse
,”
J. Fluid Mech.
169
,
535
(
1986
).
45.
J. P.
Tullis
,
Hydraulics of Pipelines
(
Wiley
, New York,
1989
).
46.
B. R.
Munson
,
D. F.
Young
, and
T. H.
Okiishi
,
Fundamentals of Fluid Mechanics
(
Wiley
, New York,
1997
).
47.
J. W.
Holl
, “
Effect of air content on occurrence of cavitation
,”
J. Basic Eng.
82
,
941
(
1960
).
48.
S. J.
Kline
and
F. A.
McClintock
, “
Describing uncertainties in single-sample experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
75
,
38
(
1953
).
49.
Y.
Yan
and
R. B.
Thorpe
, “
Flow regime transitions due to cavitation in the flow through an orifice
,”
Int. J. Multiphase Flow
16
,
1023
(
1990
).
50.
J. W.
Ball
,
J. P.
Tullis
, and
T.
Stripling
, “
Predicting cavitation in sudden enlargements
,”
J. Hydraul. Div., Am. Soc. Civ. Eng.
101
,
857
(
1975
).
51.
J. P.
Tullis
, “
Cavitation scale effects for valves
,”
J. Hydraul. Div., Am. Soc. Civ. Eng.
99
,
1109
(
1973
).
52.
K.
Ramamurthi
and
K.
Nandakumar
, “
Characteristics of flow through small sharp-edged cylindrical orifices
,”
Flow Meas. Instrum.
10
,
133
(
1999
).
53.
X.
Ong
,
C.-P
Yeh
,
T. J.
Hoverman
, and
S. H.
Collicott
, “
Effects of a small step in an orifice on liquid jet breakup
,”
Atomization Sprays
13
,
297
(
2003
).
54.
R. A.
Bunnell
,
S. D.
Heister
,
C.
Yen
, and
S. H.
Collicott
, “
Cavitating injector flows: Validation of numerical models and simulations of pressure atomizers
,”
Atomization Sprays
9
,
445
(
1999
).
55.
S. J.
Gokhale
,
J. L.
Plawsky
,
P. C.
Wayner
, and
S.
DasGupta
, “
Inferred pressure gradient and fluid flow in a condensing sessile droplet based on the measured thickness profile
,”
Phys. Fluids
16
,
1942
(
2004
).
56.
J. P.
Tullis
, “
Choking and supercavitating valves
,”
J. Hydraul. Div., Am. Soc. Civ. Eng.
97
,
1931
(
1971
).
57.
J. W.
Holl
and
G. F.
Wislicenus
, “
Scale effects on cavitation
,”
J. Basic Eng.
83
,
385
(
1961
).
58.
M. L.
Billet
and
J. W.
Holl
, “
Scale effects on various types of limited cavitation
,”
J. Fluids Eng.
103
,
405
(
1981
).
59.
J. W.
Holl
and
A. L.
Treaster
, “
Cavitation hysteresis
,” ASME Paper No. 65-FE-9, p.
13
,
1965
.
60.
A.
Karimi
and
F.
Avellan
, “
Comparison of erosion mechanisms in different types of cavitation
,”
Wear
113
,
305
(
1986
).
61.
D. R.
Stinebring
,
R. E. A.
Arndt
, and
J. W.
Holl
, “
Scaling of cavitation damage
,”
J. Hydronaut.
11
,
67
(
1977
).
You do not currently have access to this content.