Analytical equations for the viscous slip and temperature jump coefficients for a gas flowing over a surface, obtained from a variational approach, are evaluated and compared with highly accurate numerical results for rigid sphere gas interactions. The gas-surface interaction is assumed to be governed by either the elastic-diffuse (Maxwell) one-parameter model or the Cercignani-Lampis two-parameter model. Approximate analytical equations obtained for solving the inverse problem to estimate the accommodation coefficient for the one-parameter model or the tangential momentum accommodation coefficient for the two-parameter model from an error-free measurement of the viscous slip coefficient are almost always accurate to within 3%. The corresponding estimate of the accommodation coefficient for the one-parameter model from the temperature jump coefficient is almost always accurate to within 5%.

1.
F.
Sharipov
and
V.
Seleznev
, “
Data on internal rarefied gas flows
,”
J. Phys. Chem. Ref. Data
27
,
657
(
1998
).
2.
C.
Cercignani
,
R.
Illner
, and
M.
Pulvirenti
,
The Mathematical Theory of Dilute Gases
(
Springer
, New York,
1994
), pp.
226
239
.
3.
C.
Cercignani
,
The Boltzmann Equation and Its Applications
(
Springer
, New York,
1988
), pp.
104
108
and
118
128
.
4.
C.
Cercignani
,
Theory and Application of the Boltzmann Equation
(
Elsevier
, New York,
1975
), pp.
122
134
.
5.
C.
Cercignani
and
M.
Lampis
, “
Kinetic models for gas-surface interactions
,”
Transp. Theory Stat. Phys.
1
,
101
(
1971
).
6.
C. E.
Siewert
and
F.
Sharipov
, “
Model equations in rarefied gas dynamics: Viscous-slip and thermal-slip coefficients
,”
Phys. Fluids
14
,
4123
(
2002
).
7.
F.
Sharipov
, “
Application of the Cercignani-Lampis scattering kernel to calculations of rarefied gas flows. I. Plane flow between two parallel plates
,”
Eur. J. Mech. B/Fluids
21
,
113
(
2002
).
8.
F.
Sharipov
, “
Application of the Cercignani-Lampis scattering kernel to calculations of rarefied gas flows. II. Slip and jump coefficients
,”
Eur. J. Mech. B/Fluids
22
,
133
(
2003
).
9.
F.
Sharipov
, “
Application of the Cercignani-Lampis scattering kernel to calculations of rarefied gas flows. III. Poiseuille flow and thermal creep through a long tube
,”
Eur. J. Mech. B/Fluids
22
,
145
(
2003
).
10.
C. E.
Siewert
, “
Viscous-slip, thermal-slip, and temperature-jump coefficients as defined by the linearized Boltzmann equation and the Cercignani-Lampis boundary condition
,”
Phys. Fluids
15
,
1696
(
2003
).
11.
M. M. R.
Williams
,
Mathematical Methods in Particle Transport Theory
(
Butterworths
, London,
1971
), pp. and
12.
T.
Klinc
and
I.
Kuščer
, “
Slip coefficients for general gas-surface interaction
,”
Phys. Fluids
15
,
1018
(
1972
) (subscript 7 in their paper is subscript 10 here).
13.
I.
Kuščer
,
J.
Možina
, and
F.
Križanič
, “
The Knudsen model of thermal accommodation
,” in
Rarefied Gas Dynamics 7
, edited by
D.
Dini
(
Editrice Tecnico Scientifica
, Pisa, Italy,
1974
), Vol.
1
, pp.
97
102
.
14.
J.
Možina
,
N. J.
McCormick
, and
I.
Kuščer
, “
Second-order effects in gas-surface accommodation
,” in
Rarefied Gas Dynamics
(
Academic
, New York,
1974
), pp.
399
404
.
15.
S. F.
Shen
and
I.
Kuščer
, “
Symmetry of accommodation coefficients and the parametric representation of gas-surface interaction
,” in
Rarefied Gas Dynamics 7
, edited by
D.
Dini
(
Editrice Tecnico Scientifica
, Pisa, Italy,
1974
), Vol.
1
, pp.
109
122
.
16.
C. E.
Siewert
, “
Viscous-slip, thermal-slip and temperature-jump coefficients as defined by the linearized Boltzmann equation and the Cercignani-Lampis boundary condition
,”
Phys. Fluids
15
,
1696
(
2003
).
17.
L. B.
Barichello
and
C. E.
Siewert
, “
A discrete-ordinates solution for a non-grey model with complete frequency redistribution
,”
J. Quant. Spectrosc. Radiat. Transf.
62
,
665
(
1999
).
18.
L. B.
Barichello
and
C. E.
Siewert
, “
A discrete-ordinates solution for Poiseuille flow in a plane channel
,”
ZAMP
50
,
972
(
1999
).
19.
C. E.
Siewert
, “
A discrete-ordinates solution for heat transfer in a plane channel
,”
J. Comput. Phys.
152
,
251
(
1999
).
20.
L. B.
Barichello
and
C. E.
Siewert
, “
The temperature-jump problem in rarefied-gas dynamics
,”
Eur. J. Appl. Math.
11
,
353
(
2000
).
21.
L. B.
Barichello
,
M.
Camargo
,
P.
Rodrigues
, and
C. E.
Siewert
, “
Unified solutions to classical flow problems based on the BGK model
,”
ZAMP
52
,
517
(
2001
).
22.
C. E.
Siewert
, “
Kramers’ problem for a variable collision frequency model
,”
Eur. J. Appl. Math.
12
,
79
(
2001
).
23.
L. B.
Barichello
,
A. C. R.
Bartz
,
M.
Camargo
, and
C. E.
Siewert
, “
The temperature-jump problem for a variable collision frequency model
,”
Phys. Fluids
14
,
382
(
2002
).
24.
C. E.
Siewert
, “
Generalized boundary conditions for the S-model kinetic equations basic to flow in a plane channel
,”
J. Quant. Spectrosc. Radiat. Transf.
72
,
75
(
2002
).
25.
C. E.
Siewert
, “
Two half-space problems based on a synthetic-kernel model of the linearized Boltzmann equation
,”
J. Quant. Spectrosc. Radiat. Transf.
75
,
21
(
2002
).
26.
C. E.
Siewert
, “
The temperature-jump problem based on the CES model of the linearized Boltzmann equation
,”
ZAMP
55
,
92
(
2002
).
27.
C. E.
Siewert
, “
The linearized Boltzmann equation: a concise and accurate solution of the temperature-jump problem
,”
J. Quant. Spectrosc. Radiat. Transf.
77
,
417
(
2003
).
28.
I.
Kuščer
, “
Reciprocity in scattering of gas molecules by surfaces
,”
Surf. Sci.
25
,
225
(
1971
).
29.
I. S.
Gradshteyn
and
I. M.
Ryzhik
,
Table of Integrals, Series, and Products
(
Academic
, New York,
1980
), pp.
904
905
.
30.
E.
Jahnke
and
F.
Emde
,
Tables of Functions with Formulae and Curves
, 4th ed. (
Dover
, New York,
1945
), p.
73
.
31.
M.
Abramowitz
and
I. S.
Stegun
,
Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables
(
Dover
, New York,
1973
), pp.
590
592
.
32.
I.
Kuščer
, “
Boundary conditions in linear kinetic theory
,” in
Théories cinétiques classiques et relativistes
(
Colloq. Int. CNRS No. 236
, Paris,
1974
), pp.
59
70
.
33.
B.
Petek
and
I.
Kuščer
, “
Heat transfer through collisionlesss gas between parallel plates with arbitrary accommodation
,” in
Rarefied Gas Dynamics Eleventh Symposium
, edited by
R.
Campargue
(
Commissariat a l’Energie Atomique
, Paris,
1979
), Vol.
II
, pp.
1405
1408
.
34.
S.
Chapman
and
T. G.
Cowling
,
The Mathematical Theory of Non-Uniform Gases
, 3rd ed. (
Cambridge University Press
, London,
1970
).
35.
C.
Cercignani
and
M.
Lampis
, “
Variational calculation of the slip coefficient and the temperature jump for arbitrary gas-surface interactions
,” in
Rarefied Gas Dynamics: Space Related Studies
, edited by
E. P.
Muntz
,
D. P.
Weaver
, and
D. H.
Campbell
(
American Institute of Aeronautics and Astronautics
, Washington,
1989
), pp.
553
561
(subscript 7 in their paper is subscript 10 here).
36.
S. K.
Loyalka
,
C. E.
Siewert
, and
J. R.
Thomas
, “
Temperature-jump problem with arbitrary accommodation
,”
Phys. Fluids
21
,
854
(
1978
).
You do not currently have access to this content.