The recent development and application of the method of kinetically controlled selective ionization has produced detailed and reliable data on the collisional energy transfer kernel P(E,E) entering master equation theories of unimolecular reaction rates. Here we test the ability of our partially ergodic collision theory (PECT) to predict the functional form of the observed kernel leaving only one parameter, the first moment of the distribution 〈ΔE〉, to be input from other sources. The data explored here include two reactant molecules, toluene and azulene, in collisions with 18 and 8 medium molecules, respectively, ranging from inert gas atoms to n-heptane. The initial energy of the reactant molecule is varied from 10 000 cm−1 to 49 000 cm−1 and 30 000 cm−1, respectively. The energy transfer efficiency βE is about one-tenth of its ergodic collision limit of unity. The PECT is found to fit the monoexponential form of the kernel determined from the experimental data over a broad range of initial energies E including tail regions of very low probability. A minor but systematic deviation is observed for nearly elastic collisions of large medium molecules. The functional fit is good enough to effectively allow the three parameters of the monoexponential experimental kernel to be replaced by a single parameter representing energy transfer efficiency.

1.
P. J. Robinson and K. A. Holbrook, Unimolecular Reactions (Wiley–Interscience, New York, 1972).
2.
R. G. Gilbert and S. C. Smith, Theory of Unimolecular and Recombination Reactions (Blackwell Scientific, Oxford, 1990).
3.
T. Baer and W. L. Hase, Unimolecular Reaction Dynamics, Theory, and Experiments (Oxford University Press, New York, 1996).
4.
C. N.
Hinshelwood
,
Proc. R. Soc. London, Ser. A
113
,
230
(
1927
).
5.
G. H.
Kohlmaier
and
B. S.
Rabinovitch
,
J. Chem. Phys.
38
,
1692
(
1963
);
G. H.
Kohlmaier
and
B. S.
Rabinovitch
,
J. Chem. Phys.
38
,
1709
(
1963
).
6.
J. W.
Simmons
,
B. S.
Rabinovitch
, and
D. W.
Setser
,
J. Chem. Phys.
41
,
800
(
1964
).
7.
D. C.
Tardy
and
B. S.
Rabinovitch
,
J. Chem. Phys.
45
,
3720
(
1966
).
8.
J.
Troe
,
J. Chem. Phys.
66
,
4745
(
1977
).
9.
H. Hippler and J. Troe, in Bimolecular Reactions, edited by J. E. Baggot and M. N. R. Ashfold (The Royal Chemical Society, London, 1989), pp. 209–262.
10.
K. F.
Lim
and
R. G.
Gilbert
,
J. Phys. Chem.
94
,
72
(
1990
).
11.
K. F.
Lim
and
R. G.
Gilbert
,
J. Phys. Chem.
94
,
77
(
1990
).
12.
S. Nordholm and H. W. Schranz, in Advances in Kinetics and Dynamics, edited by J. R. Barker (JAI, Greenwich, 1995), Vol. 2A, pp. 245–281.
13.
H.
Svedung
,
L. E. B.
Börjesson
,
N.
Markovic
, and
S.
Nordholm
,
Chem. Phys.
236
,
189
(
1998
).
14.
H.
Svedung
,
N.
Markovic
, and
S.
Nordholm
,
Chem. Phys.
248
,
195
(
1999
).
15.
G.
Lendvay
and
G. C.
Schatz
,
J. Phys. Chem.
98
,
6530
(
1994
).
16.
T.
Lenzer
,
K.
Luther
,
J.
Troe
,
R. G.
Gilbert
, and
K. F.
Lim
,
J. Chem. Phys.
103
,
626
(
1995
).
17.
T.
Lenzer
and
K.
Luther
,
J. Chem. Phys.
104
,
3391
(
1996
).
18.
S.
Hassoon
,
I.
Oref
, and
C.
Steel
,
J. Chem. Phys.
89
,
1743
(
1988
).
19.
J. M.
Morgulis
,
S. S.
Sapers
,
C.
Steel
, and
I.
Oref
,
J. Chem. Phys.
90
,
923
(
1989
).
20.
A. S.
Mullin
,
C. A.
Michaels
, and
G. W.
Flynn
,
J. Chem. Phys.
102
,
6682
(
1995
).
21.
C. A.
Michaels
and
G. W.
Flynn
,
J. Chem. Phys.
106
,
3558
(
1997
).
22.
C. A.
Michaels
,
Z.
Lin
,
A. S.
Mullin
,
H. C.
Tapalian
, and
G. W.
Flynn
,
J. Chem. Phys.
106
,
7055
(
1997
).
23.
E. T.
Sevy
,
S. M.
Rubin
,
Z.
Lin
, and
G. W.
Flynn
,
J. Chem. Phys.
113
,
4912
(
2000
).
24.
M. S.
Elioff
,
M.
Fang
, and
A. S.
Mullin
,
J. Chem. Phys.
115
,
6990
(
2001
).
25.
J.
Park
,
L.
Shum
,
A. S.
Lemoff
,
K.
Werner
, and
A. S.
Mullin
,
J. Chem. Phys.
117
,
5221
(
2002
).
26.
G.
Lendvay
and
G. C.
Schatz
,
J. Phys. Chem.
94
,
8864
(
1990
).
27.
D. L.
Clarke
,
K. C.
Thompson
, and
R. G.
Gilbert
,
Chem. Phys. Lett.
182
,
357
(
1991
).
28.
D. L.
Clarke
,
K. F.
Lim
,
I.
Oref
, and
R. G.
Gilbert
,
J. Chem. Phys.
96
,
5983
(
1992
).
29.
K. S. J.
Nordholm
,
B. C.
Freasier
, and
D. L.
Jolly
,
Chem. Phys.
25
,
433
(
1977
).
30.
B. C.
Freasier
,
D. L.
Jolly
, and
S.
Nordholm
,
Chem. Phys.
32
,
161
(
1978
).
31.
L. E. B.
Börjesson
and
S.
Nordholm
,
J. Phys. Chem.
99
,
938
(
1995
).
32.
Liu
Ming
,
T. D.
Sewell
, and
S.
Nordholm
,
Chem. Phys.
199
,
83
(
1995
).
33.
Liu
Ming
,
J.
Davidsson
, and
S.
Nordholm
,
Chem. Phys.
201
,
121
(
1995
).
34.
Liu
Ming
,
J.
Davidsson
, and
S.
Nordholm
,
J. Chem. Phys.
104
,
9001
(
1996
).
35.
K.
Luther
and
K.
Reihs
,
Ber. Bunsenges. Phys. Chem.
92
,
442
(
1988
).
36.
U.
Hold
,
T.
Lenzer
,
K.
Luther
,
K.
Reihs
, and
A. C.
Symmonds
,
J. Chem. Phys.
112
,
4076
(
2000
).
37.
T.
Lenzer
,
K.
Luther
,
K.
Reihs
, and
A. C.
Symmonds
,
J. Chem. Phys.
112
,
4090
(
2000
).
38.
D.
Nilsson
and
S.
Nordholm
,
J. Chem. Phys.
116
,
7040
(
2002
).
39.
U.
Grigoleit
,
T.
Lenzer
,
K.
Luther
,
M.
Mützel
, and
A.
Takahara
,
Phys. Chem. Chem. Phys.
3
,
2191
(
2001
).
40.
U.
Hold
,
T.
Lenzer
,
K.
Luther
, and
A. C.
Symmonds
,
J. Chem. Phys.
119
,
11192
(
2003
), preceding paper.
41.
S.
Nordholm
,
L. E. B.
Börjesson
,
Liu
Ming
, and
Harald
Svedung
,
Ber. Bunsenges. Phys. Chem.
101
,
574
(
1997
).
42.
L. E. B.
Börjesson
,
S.
Nordholm
, and
L. L.
Andersson
,
Chem. Phys. Lett.
186
,
65
(
1991
).
43.
S. J.
Mole
,
X.
Zhou
,
J. G.
Wardeska
, and
R.
Liu
,
Spectrochim. Acta, Part A
52
,
1211
(
1996
).
44.
W.
Paulick
,
Ch.
Jung
,
U.
Kempka
,
J.
Sühnel
, and
K.
Gustav
,
J. Mol. Struct.: THEOCHEM
85
,
235
(
1981
).
45.
J. H.
Schachtschneider
and
R. G.
Snyder
,
Spectrochim. Acta
19
,
117
(
1963
).
46.
D. L.
Gray
and
A. G.
Robiette
,
Mol. Phys.
37
,
1901
(
1979
).
47.
G. Herzberg, Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules (Van Nostrand, New York, 1950).
48.
L. E. B.
Börjesson
,
J.
Davidson
,
N.
Markovic
, and
S.
Nordholm
,
Chem. Phys.
177
,
133
(
1993
).
This content is only available via PDF.
You do not currently have access to this content.