We have computed the potential energy surfaces for the low-lying electronic states of uranium hydrides, UHn(n=1–3), which are important in the uranium hydriding reactions. We have employed a number of computational methods including the complete active space multiconfiguration self-consistent field followed by multireference relativistic configuration interaction computations with spin–orbit coupling that included up to 6 million configurations. We find that the activation barrier to insert uranium into H2 is reduced substantially by spin–orbit coupling, and the product species UH2 in its A1 spin–orbit ground state is substantially stable over U(5L)+H2 dissociated products. We have found two electronic states for UH to be quite close to each other, and depending on the level of theory the relative ordering of the Λ6 and I4 states changes, I4 state being the lowest at the highest second-order configuration interaction level. The UH2 species also exhibits a similar feature in that the triplet state is favored at the single-reference second-order Møller–Plesset and coupled cluster levels, while the quintet state is favored at the multireference and density functional theory levels. The UH3 species is extremely floppy, exhibiting an inversion potential surface that has a barrier smaller than its zero-point energy. It is shown that the UH3 species is considerably more ionic than UH2 or UH, and UH3 is responsible for catalyzing the U-hydriding reaction as the highly positive U site in UH3 reacts with H2 spontaneously without an activation barrier. The results of our computations are compared with previous experimental results. The spin–orbit coupling is shown to be more important for energy activation than near the minima.

1.
J. B.
Condon
and
E. A.
Larson
,
J. Chem. Phys.
59
,
855
(
1973
).
2.
J. B.
Condon
,
J. Phys. Chem.
79
,
392
(
1975
).
3.
J. R.
Kirkpatrick
,
J. Phys. Chem.
85
,
3444
(
1981
).
4.
J.
Bloch
and
M. H.
Mintz
,
J. Less-Common Met.
81
,
301
(
1981
).
5.
J. R. Kirkpatrick and J. B. Condon, “Modeling reaction between uranium and hydrogen,” Oakridge National Lab, Internal Report, K/CSD/TM-87, 1990, pp. 1–41.
6.
G. L.
Powell
,
W. L.
Harper
, and
J. R.
Kirkpatrick
,
J. Less-Common Met.
172
,
116
(
1991
).
7.
A. L.
DeMint
and
J. H.
Leckey
,
J. Nucl. Mater.
281
,
208
(
2000
).
8.
M. H.
Mintz
and
J.
Bloch
,
Prog. Solid State Chem.
16
,
163
(
1985
).
9.
M.
Balooch
and
A. V.
Hamza
,
J. Nucl. Mater.
230
,
259
(
1996
).
10.
M.
Balooch
and
W. J.
Siekhaus
,
J. Nucl. Mater.
255
,
263
(
1998
).
11.
M. H.
Mintz
,
R.
Arkush
,
A.
Venkert
,
M.
Aizenshtein
,
S.
Zalkind
,
D.
Moreno
,
N.
Shamir
, and
M.
Brill
,
J. Alloys Compd.
244
,
197
(
1996
).
12.
D.
Moreno
,
R.
Arkush
,
S.
Zalkind
, and
N.
Shamir
,
J. Alloys Compd.
230
,
181
(
1996
);
R.
Arkush
,
M.
Brill
,
S.
Zalkind
,
M. H.
Mintz
, and
N.
Shamir
,
J. Alloys Compd.
330
,
472
(
2002
).
13.
T. C.
Totemeier
,
J. Nucl. Mater.
278
,
301
(
2000
).
14.
A.
Danon
,
J. E.
Koresh
, and
M. H.
Mintz
,
Langmuir
15
,
5913
(
1999
).
15.
M. R.
Castell
,
S. L.
Dudarev
,
C.
Muggelberg
,
A. P.
Sutton
,
G. A. D.
Briggs
, and
D. T.
Goddard
,
J. Vac. Sci. Technol. A
16
,
1055
(
1998
).
16.
C.
Muggelberg
,
M. R.
Castell
,
G. A. D.
Briggs
, and
D. T.
Goddard
,
Surf. Sci.
402–404
,
673
(
1998
).
17.
G. C.
Allen
,
I. R.
Trickle
, and
P. M.
Tucker
,
Philos. Mag. B
43
,
689
(
1981
).
18.
R. D.
Hunt
and
L.
Andrews
,
J. Chem. Phys.
98
,
3690
(
1993
).
19.
R. D.
Hunt
,
J. T.
Yustein
, and
L.
Andrews
,
J. Chem. Phys.
98
,
6070
(
1993
).
20.
T. J.
Tague
, Jr.
,
L.
Andrews
, and
R. D.
Hunt
,
J. Phys. Chem.
97
,
10920
(
1993
).
21.
R. D.
Hunt
,
C. A.
Thompson
,
P.
Hassanzadeh
, and
L.
Andrews
,
Inorg. Chem.
33
,
388
(
1994
).
22.
P. F.
Souter
,
G. P.
Kushto
, and
L.
Andrews
,
Chem. Commun. (Cambridge)
1996
,
2401
.
23.
P. F.
Souter
,
G. P.
Kushto
,
L.
Andrews
, and
M.
Neurock
,
J. Am. Chem. Soc.
119
,
1682
(
1997
).
24.
G. P.
Kushto
,
P. F.
Souter
, and
L.
Andrews
,
J. Chem. Phys.
108
,
7121
(
1998
);
S. P.
Wilson
and
L.
Andrews
,
J. Phys. Chem.
104
,
1640
(
2000
).
25.
P. E.
Moreland
,
D. J.
Rokop
, and
C. M.
Stevens
,
Int. J. Mass Spectrom. Ion Phys.
5
,
127
(
1970
).
26.
P.
Pyykkö
,
Chem. Rev.
88
,
563
(
1988
).
27.
P.
Pyykkö
,
J.
Li
, and
N.
Runeberg
,
J. Phys. Chem.
98
,
4809
(
1994
).
28.
P.
Pyykkö
and
J. P.
Desclaux
,
J. Chem. Phys.
34
,
261
(
1978
).
29.
P.
Pyykkö
,
J. Chem. Soc., Faraday Trans 2
,
75
,
1256
(
1979
).
30.
M.
Pepper
and
B. E.
Bursten
,
Chem. Rev.
91
,
719
(
1991
).
31.
M.
Pepper
and
B. E.
Bursten
,
J. Am. Chem. Soc.
112
,
7804
(
1990
).
32.
R. H.
Cayton
,
K. J.
Novo-Gradac
, and
B. E.
Bursten
,
Inorg. Chem.
30
,
2265
(
1991
).
33.
M.
Krauss
and
W. J.
Stevens
,
J. Comput. Chem.
4
,
127
(
1983
).
34.
K.
Balasubramanian
,
Adv. Met. Semicond. Clusters
2
,
115
(
1994
).
35.
K. Balasubramanian, in Handbook on the Physics and Chemistry of Rare Earths (Elsevier Science, New York), 18, 29 1994).
36.
K.
Balasubramanian
,
P.
Feng
, and
M. Z.
Liao
,
J. Chem. Phys.
88
,
6955
(
1988
).
37.
K.
Balasubramanian
and
Z.
Ma
,
J. Phys. Chem.
95
,
9794
(
1991
).
38.
D. G.
Dai
,
W.
Cheng
, and
K.
Balasubramanian
,
J. Chem. Phys.
95
,
9094
(
1991
).
39.
D.
Dai
,
D. W.
Liao
, and
K.
Balasubramanian
,
J. Chem. Phys.
102
,
7530
(
1995
).
40.
K.
Balasubramanian
,
J. Chem. Phys.
94
,
1253
(
1991
).
41.
K.
Balasubramanian
,
J. Chem. Phys.
116
,
3568
(
2002
).
42.
K. Balasubramanian, Relativistic Effects in Chemistry: Part A: Theory and Techniques (Wiley Interscience, New York, 1997);
Relativistic Effects in Chemistry: Part B. Applications to Molecules & Clusters (Wiley Interscience, New York, 1997).
43.
W. C.
Ermler
,
R. B.
Ross
, and
P. A.
Christiansen
,
Int. J. Quantum Chem.
40
,
829
(
1991
).
44.
F. B. van Duijneveldt, IBM Tech. Res. Rep. RF1971, 945.
45.
D.
Majumdar
,
K.
Balasubramanian
, and
H.
Nitsche
,
Chem. Phys. Lett.
361
,
141
(
2002
).
46.
R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules (Oxford, New York, 1989).
47.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
48.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusiar
,
Can. J. Phys.
58
,
1200
(
1980
).
49.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
50.
C.
Peng
,
P. Y.
Ayala
,
H. B.
Schlegel
, and
M. J.
Frisch
,
J. Comput. Chem.
17
,
49
(
1996
).
51.
K.
Balasubramanian
,
Chem. Phys. Lett.
127
,
324
(
1986
).
52.
The major authors of ALCHEMY II are B. Liu and M. Yoshimine.
53.
K.
Balasubramanian
,
J. Chem. Phys.
112
,
7425
(
2000
).
54.
R. M.
Pitzer
and
N. W.
Winter
,
J. Phys. Chem.
92
,
3061
(
1988
).
55.
M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 98, Revision A7, Gaussian, Inc., Pittsburgh, PA, 1998.
56.
M. Straka, M. Patzschke, and P. Pyykkö, Theor. Chem. Acc. (to be published).
This content is only available via PDF.
You do not currently have access to this content.