In the presence of prey, the marine mollusk Clione limacina exhibits search behavior, i.e., circular motions whose plane and radius change in a chaotic-like manner. We have formulated a dynamical model of the chaotic hunting behavior of Clione based on physiological in vivo and in vitro experiments. The model includes a description of the action of the cerebral hunting interneuron on the receptor neurons of the gravity sensory organ, the statocyst. A network of six receptor model neurons with Lotka–Volterra-type dynamics and nonsymmetric inhibitory interactions has no simple static attractors that correspond to winner take all phenomena. Instead, the winnerless competition induced by the hunting neuron displays hyperchaos with two positive Lyapunov exponents. The origin of the chaos is related to the interaction of two clusters of receptor neurons that are described with two heteroclinic loops in phase space. We hypothesize that the chaotic activity of the receptor neurons can drive the complex behavior of Clione observed during hunting.

1.
G. N. Orlovsky, T. G. Deliagina, and S. Grillner, Neuronal Control of Locomotion. From Mollusc to Man (Oxford University Press, New York, 1999).
2.
Y. I.
Arshavsky
,
I. N.
Beloozerova
,
G. N.
Orlovsky
,
Y. V.
Panchin
, and
G. A.
Pavlova
, “
Control of locomotion in marine mollusc Clione limacina. I. Efferent activity during actual and fictitious swimming
,”
Exp. Brain Res.
58
,
255
262
(
1985
).
3.
Y. V.
Panchin
,
Y. I.
Arshavsky
,
T. G.
Deliagina
,
L. B.
Popova
, and
G. N.
Orlovsky
, “
Control of locomotion in marine mollusk Clione limacina. IX. Neuronal mechanisms of spatial orientation
,”
J. Neurophysiol.
75
,
1924
1936
(
1995
).
4.
T. P.
Tsirulis
, “
The fine structure of the statocyst in the gastropod mollusc Clione limacina
,”
Zh. Evol. Biokhim. Fiziol.
10
,
181
188
(
1974
) (in Russian).
5.
Y. V.
Panchin
,
L. B.
Popova
,
T. G.
Deliagina
,
G. N.
Orlovsky
, and
Y. I.
Arshavsky
, “
Control of locomotion in marine mollusk Clione limacina. VIII. Cerebro-pedal neurons
,”
J. Neurophysiol.
73
,
1912
1923
(
1995
).
6.
Y. I.
Arshavsky
,
T. G.
Deliagina
,
G. N.
Gamkrelidze
,
G. N.
Orlovsky
,
Y. V.
Panchin
, and
L. B.
Popova
, “
Pharmacologically-induced elements of feeding behavior in the pteropod mollusc Clione limacina. II. Effect of physostigmine
,”
J. Neurophysiol.
69
,
522
532
(
1993
).
7.
M. I.
Rabinovich
,
P.
Varona
,
Y. I.
Arshavsky
, and
A. I.
Selverston
, “
Dynamical origin of the random-like hunting behavior of the marine mollusk Clione
,”
Soc. Neurosci. Abs.
27
,
943
.
13
(
2001
).
8.
N. MacDonald, Trees and Networks in Biological Models (Wiley, New York, 1983).
9.
M. A.
Cohen
and
S.
Grossberg
, “
Absolute stability of global pattern formation and parallel memory storage by competitive neural networks
,”
IEEE Trans. Syst. Man Cybern.
5
,
815
826
(
1983
).
10.
J. J.
Hopfield
, “
Neural networks and systems with emergent selective computational abilities
,”
Proc. Natl. Acad. Sci. U.S.A.
79
,
2554
2558
(
1982
).
11.
V. S.
Afraimovich
,
S. B.
Hsu
, and
H. E.
Lin
, “
Chaotic behavior of three competing species of May–Leonard model under small periodic perturbations
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
11
,
435
447
(
2001
).
12.
C. W.
Chi
,
S. B.
Hsu
, and
L. I.
Wu
, “
On the asymmetric May–Leonard model of three competing species
,”
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
58
,
211
226
(
1998
).
13.
M. I.
Rabinovich
,
A.
Volkovskii
,
P.
Lecanda
,
R.
Huerta
,
H. D. I.
Abarbanel
, and
G.
Laurent
, “
Dynamical encoding by networks of competing neuron groups: Winnerless competition
,”
Phys. Rev. Lett.
87
,
068102
(
2001
).
14.
M. I. Rabinovich, A. B. Ezersky, and P. D. Weidman, The Dynamics of Patterns (World Scientific, Singapore, 2001).
15.
J. J.
Collins
and
I.
Stewart
, “
Hexapodal gaits and coupled nonlinear oscillator models
,”
Biol. Cybern.
68
,
287
298
(
1993
).
16.
A. V. Gaponov-Grekhov and M. I. Rabinovich, Nonlinearities in Action (Springer, Berlin, 1992).
17.
T.
Elbert
,
W. J.
Ray
,
Z. J.
Kowalik
,
J. E.
Skinner
,
E. E.
Graf
, and
N.
Birbaumer
, “
Chaos and physiology: Deterministic chaos in excitable cell assemblies
,”
Physiol. Rev.
74
,
1
47
(
1994
).
18.
H.
Hayashi
and
S.
Ishizuka
, “
Chaotic nature of bursting discharges in the Onchidium Pacemar neuron
,”
J. Theor. Biol.
156
,
269
291
(
1992
).
19.
P.
Varona
,
J. J.
Torres
,
R.
Huerta
,
H. D. I.
Abarbanel
, and
M. I.
Rabinovich
, “
Regularization mechanisms of spiking-bursting neurons
,”
Neural Networks
14
,
865
875
(
2001
).
20.
R.
Huerta
,
P.
Varona
,
M. I.
Rabinovich
, and
H. D. I.
Abarbanel
, “
Topology selection by chaotic neurons of a pyloric central pattern generator
,”
Biol. Cybern.
84
,
L1
L8
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.