The performance of three different L2 methods are tested in calculations of radiative association cross sections in collisions of Li with H+. The first two methods, the smooth-exterior-complex-scaling method and a method using complex absorbing potentials, are based on the direct determination of poles of the Green function and are superior at low collision energies where narrow shape resonances dominate. The third method, based on the iterative Chebyshev-polynomial expansion of the Green function, is efficient only at higher energies where the cross sections are smooth functions of the collision energy.

1.
A.
Dalgarno
,
K.
Kirby
, and
P. C.
Stancil
,
Astrophys. J.
458
,
397
(
1996
).
2.
F. A.
Gianturco
and
P. Gori
Giorgi
,
Astrophys. J.
479
,
560
(
1997
).
3.
E.
Balslev
and
J. M.
Combes
,
Commun. Math. Phys.
22
,
280
(
1971
).
4.
B.
Simon
,
Commun. Math. Phys.
27
,
1
(
1972
).
5.
B.
Simon
,
Ann. Math.
97
,
247
(
1973
).
6.
T. N.
Rescigno
and
V.
McKoy
,
Phys. Rev. A
12
,
522
(
1975
).
7.
H.
Suno
,
L.
Andric
,
T. P.
Grozdanov
, and
R.
McCarroll
,
Phys. Lett. A
256
,
377
(
2000
).
8.
D.
Delande
,
A.
Bommier
, and
J. C.
Gay
,
Phys. Rev. Lett.
66
,
141
(
1991
).
9.
J.
Main
and
G.
Wunner
,
J. Phys. B
27
,
2835
(
1994
).
10.
H. O.
Karlsson
and
O.
Goscinski
,
J. Phys. B
27
,
1061
(
1994
).
11.
H.
Suno
,
L.
Andric
,
T. P.
Grozdanov
, and
R.
McCarroll
,
Eur. Phys. J. D
13
,
213
(
2001
).
12.
N.
Moiseyev
and
C. T.
Corcoran
,
Phys. Rev. A
20
,
814
(
1979
).
13.
V.
Ryaboy
and
N.
Moiseyev
,
J. Chem. Phys.
103
,
4061
(
1995
).
14.
B.
Simon
,
Phys. Lett. A
71
,
211
(
1979
).
15.
N.
Rom
,
E.
Engdahl
, and
N.
Moiseyev
,
J. Chem. Phys.
93
,
3413
(
1990
).
16.
N.
Moiseyev
,
J. Phys. B
31
,
1431
(
1998
).
17.
H. O.
Karlsson
,
J. Chem. Phys.
109
,
9366
(
1998
).
18.
N.
Elander
and
E.
Yarevsky
,
Phys. Rev. A
57
,
3119
(
1998
).
19.
M. V.
Ivanov
,
J. Phys. B
34
,
2447
(
2001
).
20.
T. N.
Rescigno
,
M.
Bartschy
,
D.
Byrum
, and
C. W.
McCurdy
,
Phys. Rev. A
55
,
4253
(
1997
).
21.
R.
Zavin
,
I.
Vorobeichik
, and
N.
Moiseyev
,
Chem. Phys. Lett.
288
,
413
(
1998
).
22.
L. Andric, I. Baccarelli, T. P. Grozdanov, and R. McCarroll, Phys. Lett. A (submitted).
23.
T.
Seideman
,
J. Chem. Phys.
98
,
1989
(
1993
).
24.
R. C.
Mayrhofer
and
J. M.
Bowman
,
J. Chem. Phys.
100
,
7229
(
1994
).
25.
V. A.
Mandelshtam
and
H. S.
Taylor
,
J. Chem. Phys.
103
,
2903
(
1995
).
26.
T. P.
Grozdanov
and
R.
McCarroll
,
J. Phys. B
29
,
3373
(
1996
).
27.
L.
Andric
,
T. P.
Grozdanov
,
R.
McCarroll
, and
W.-Ü.
Tchang-Brilet
,
J. Phys. B
32
,
4729
(
1999
).
28.
E. Soares
Barbarosa
,
R.
McCarroll
,
T. P.
Grozdanov
, and
P.
Rosmus
,
Phys. Chem. Chem. Phys.
2
,
3131
(
2000
).
29.
N.
Moiseyev
and
J. O.
Hirschfelder
,
J. Chem. Phys.
88
,
1063
(
1988
).
30.
D. T.
Colbert
and
W. H.
Miller
,
J. Chem. Phys.
96
,
1982
(
1992
).
31.
G. C.
Groenenboom
and
D. T.
Colbert
,
J. Chem. Phys.
99
,
9681
(
1993
).
32.
H.
Berriche
and
F. X.
Gadea
,
Chem. Phys.
191
,
119
(
1995
).
33.
A.
Vibok
and
G. G.
Balint-Kurti
,
J. Phys. Chem.
96
,
8712
(
1992
).
34.
U. V.
Riss
and
H.-D.
Meyer
,
J. Phys. B
26
,
4503
(
1993
).
35.
M. R.
Wall
and
D.
Neuhauser
,
J. Chem. Phys.
102
,
8011
(
1995
).
36.
V. A.
Mandelshtam
and
H. S.
Taylor
,
J. Chem. Phys.
107
,
6756
(
1997
).
This content is only available via PDF.
You do not currently have access to this content.