A computation of the dynamical structure factor of topologically disordered systems, where the disorder can be described in terms of Euclidean random matrices, is presented. Among others, structural glasses and supercooled liquids belong to that class of systems. The computation describes their relevant spectral features in the region of the high frequency sound. The analytical results are tested with numerical simulations and are found to be in very good agreement with them. Our results may explain the findings of inelastic x-ray scattering experiments in various glassy systems.

1.
P.
Benassi
et al.,
Phys. Rev. Lett.
77
,
3835
(
1996
).
2.
C.
Masciovecchio
et al.,
Phys. Rev. B
55
,
8049
(
1997
).
3.
C.
Masciovecchio
et al.,
Phys. Rev. Lett.
76
,
3356
(
1996
).
4.
G.
Monaco
,
C.
Masciovecchio
,
G.
Ruocco
, and
F.
Sette
,
Phys. Rev. Lett.
80
,
2161
(
1998
).
5.
C.
Masciovecchio
et al.,
Phys. Rev. Lett.
80
,
544
(
1998
).
6.
D.
Fioretto
et al.,
Phys. Rev. E
59
,
4470
(
1999
).
7.
P. A.
Sokolov
et al.,
Phys. Rev. E
60
,
2464
(
1999
).
8.
G.
Ruocco
et al.,
Phys. Rev. Lett.
83
,
5583
(
1999
).
9.
F.
Sette
et al.,
Science
280
,
1550
(
1998
).
10.
U.
Buchenau
et al.,
Phys. Rev. B
34
,
5665
(
1986
).
11.
M.
Foret
,
E.
Courtens
,
R.
Vacher
, and
J. B.
Suck
,
Phys. Rev. Lett.
77
,
3831
(
1996
).
12.
J.
Horbach
,
W.
Kob
, and
K.
Binder
, cond-mat/9910445.
13.
S. N.
Taraskin
and
S. R.
Elliot
,
Phys. Rev. B
59
,
8572
(
1999
).
14.
R.
Dell’Anna
,
G.
Ruocco
,
M.
Sampoli
, and
G.
Viliani
,
Phys. Rev. Lett.
80
,
1236
(
1998
).
15.
J. L.
Feldman
,
P. B.
Allen
, and
S. R.
Bickham
,
Phys. Rev. B
59
,
3551
(
1999
).
16.
P. L.
Allend
,
J. L.
Feldman
,
J.
Fabian
, and
F.
Wooten
, cond-mat/9907132.
17.
M. C. C.
Ribeiro
,
M.
Wilson
, and
P. A.
Madden
,
J. Chem. Phys.
108
,
9027
(
1998
).
18.
V.
Mazzacurati
,
G.
Ruocco
, and
M.
Sampoli
,
Europhys. Lett.
34
,
681
(
1996
).
19.
M.
Sampoli
,
P.
Benassi
,
R.
Dell’Anna
,
V.
Mazzacurati
, and
G.
Ruocco
,
Philos. Mag. B
77
,
473
(
1998
).
20.
See, for instance, J. P. Hansen, and I. R. McDonald, Theory of Simple Liquids (Academic, London, 1986).
21.
G.
Ruocco
et al.,
Phys. Rev. Lett.
84
,
5788
(
2000
).
22.
See S. R. Elliot, Physics of Amorphous Materials (Longman, England, 1983), and references therein.
23.
S. B.
Bembenek
and
S. D.
Laird
,
J. Chem. Phys.
104
,
5199
(
1996
).
24.
W.
Schirmacher
,
G.
Diezemann
, and
C.
Ganter
,
Phys. Rev. Lett.
81
,
136
(
1998
).
25.
M.
Montagna
et al.,
Phys. Rev. Lett.
83
,
3450
(
1999
).
26.
V.
Martin-Mayor
,
G.
Parisi
, and
P.
Verrocchio
, Phys. Rev. E (to be published);
V.
Martin-Mayor
,
G.
Parisi
, and
P.
Verrocchio
, cond-mat/9911462.
27.
W.
Götze
and
M. R.
Mayr
,
Phys. Rev. E
61
,
587
(
2000
).
28.
M. L. Metha, Random Matrices (Academic, New York, 1991).
29.
See
T.
Keyes
,
J. Chem. Phys.
101
,
2921
(
1997
), and references therein.
30.
Y.
Wan
and
R.
Stratt
,
J. Chem. Phys.
100
,
5123
(
1994
).
31.
T. M.
Wu
and
R. F.
Loring
,
J. Chem. Phys.
97
,
8368
(
1992
).
32.
A.
Cavagna
,
I.
Giardina
, and
G.
Parisi
,
Phys. Rev. Lett.
83
,
108
(
1999
).
33.
T. R.
Kirkpatrick
and
P. G.
Wolynes
,
Phys. Rev. A
34
,
1045
(
1986
).
For a review see also
T. R.
Kirkpatrick
and
D.
Thirumalai
,
Transp. Theory Stat. Phys.
24
,
927
(
1995
).
34.
K.
Broderix
,
K. K.
Batthacharya
,
A.
Cavagna
,
A.
Zippelius
, and
I.
Giardina
, cond-mat/0007258.
35.
L.
Angelani
,
R.
Di Leonardo
,
G.
Ruocco
,
A.
Scala
, and
F.
Sciortino
, cond-mat/0007241.
36.
J.
Horbach
,
W.
Kob
, and
K.
Binder
,
J. Phys. Chem. B
103
,
4104
(
1999
).
37.
M.
Mézard
,
G.
Parisi
, and
A.
Zee
,
Nucl. Phys. B
559
,
689
(
1999
);
M.
Mézard
,
G.
Parisi
, and
A.
Zee
, cond-mat/9906135.
38.
T. Grigera, V. Martin-Mayor, G. Parisi, and P. Verrocchio (in preparation).
39.
M.
Mézard
and
G.
Parisi
,
J. Phys. (Paris)
49
,
2019
(
1988
).
40.
A.
Bray
and
G. J.
Rodgers
,
Phys. Rev. B
39
,
11461
(
1988
).
41.
G.
Biroli
and
R.
Monasson
,
J. Phys. A
32
,
L255
(
1999
).
42.
R.
Monasson
,
Eur. Phys. J. B
12
,
555
(
1999
).
43.
V. Martı́n-Mayor, M. Mézard, G. Parisi, and P. Verrocchio (in preparation).
44.
It is easy to see that Eq. (48) always has one and only one solution E*max. Indeed, for E>εmax,Re Σ1(∞,E) is a positive decreasing function of E, that tends to zero at infinity. On the other hand, E−εmax is a positive increasing function that tends to zero at εmax and diverges at infinite. Therefore, these two functions have one and only one crossing point for E>εmax, as we wanted to show.
45.
C.
Benoit
,
E.
Royer
, and
G.
Poussigue
,
J. Phys.: Condens. Matter
4
,
3125
(
1992
), and references therein;
C.
Benoit
J. Phys.: Condens. Matter
1
,
335
(
1989
);
G.
Viliani
et al.,
Phys. Rev. B
52
,
3346
(
1995
);
Phys. Rev. E (to be published).
46.
P.
Turchi
,
F.
Ducastelle
, and
G.
Treglia
,
J. Phys. C
15
,
2891
(
1982
).
47.
M.
Mézard
and
G.
Parisi
,
Phys. Rev. Lett.
82
,
747
(
1998
).
48.
B.
Coluzzi
,
G.
Parisi
, and
P.
Verrocchio
,
J. Chem. Phys.
112
,
2933
(
2000
);
B.
Coluzzi
,
G.
Parisi
, and
P.
Verrocchio
,
Phys. Rev. Lett.
84
,
306
(
2000
).
49.
A.
Zee
and
I.
Affleck
, cond-mat/00006342.
This content is only available via PDF.
You do not currently have access to this content.